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Abstract

Background: The number of cases from the coronavirus disease 2019 (COVID-19) global pandemic has
overwhelmed existing medical facilities and forced clinicians, patients, and families to make pivotal decisions with
limited time and information.

Main body: While machine learning (ML) methods have been previously used to augment clinical decisions, there
is now a demand for “Emergency ML.” Throughout the patient care pathway, there are opportunities for ML-
supported decisions based on collected vitals, laboratory results, medication orders, and comorbidities. With rapidly
growing datasets, there also remain important considerations when developing and validating ML models.

Conclusion: This perspective highlights the utility of evidence-based prediction tools in a number of clinical
settings, and how similar models can be deployed during the COVID-19 pandemic to guide hospital frontlines and
healthcare administrators to make informed decisions about patient care and managing hospital volume.

Keywords: Artificial intelligence (AI), Clinical decision-making, Coronavirus disease 19 (COVID-19), Healthcare,
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Background
Coronavirus disease 2019 (COVID-19), caused by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-
CoV2), has spread to the level of a global pandemic
(World Health Organization 2020) with, at the time of
writing, over 1.6 million reported cases in the United
States and 5.6 million worldwide. In the United States,
New York City was the epicenter of the disease with
over 199,000 confirmed cases and over 16,400 deaths
(Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University 2020). At the pandemic’s peak,
existing medical facilities were overwhelmed, with emer-
gency departments (EDs), floor units, and Intensive Care
Units (ICUs) stretched beyond capacity and resources
(Evans and Armour 2020). Due to the challenges of this

novel disease, healthcare providers, patients, and their
families have been required to rapidly make crucial and
difficult decisions with limited information. The pheno-
types of COVID-19 range from no or relatively mild
symptoms and uneventful recovery to rapid deterior-
ation, acute respiratory distress syndrome (ARDS),
multi-organ system failure, and death. The trajectory for
patients most likely to decompensate is being investi-
gated but remains elusive at present; lack of standard-
ized care is forcing unprecedented workflow for
physicians and nurses. Given the gravity of these circum-
stances and increase in the number of cases, there is a
pressing need for tools that can augment current health-
care resources. Machine learning (ML) and artificial
intelligence (AI) methods can be applied to understand
subgroups of patients, guide clinical decision-making,
and improve both operation- and patient-centered out-
comes. This perspective highlights the benefits of these
tools observed at various clinical settings and describes
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how the value of ML and AI algorithms, when conscien-
tiously built, may be augmented during the COVID-19
pandemic.

Main text
Identifying underlying clinical patterns is already an area
of active investigation in the field of ML/AI in healthcare;
programs range from modulating single parameters to ad-
vanced predictive modeling to forecast decompensation,
among other clinical outcomes, and augment medical de-
cisions (Churpek and Edelson 2016; Kipnis et al. 2016;
Brekke et al. 2019). The ongoing COVID-19 health crisis
has transformed the aspiration for enhanced clinical
decision-making tools into a demand for “Emergency
ML.” To support the medical response to COVID-19, re-
searchers are compressing traditional timelines of retro-
spective training and testing, prospective validation,
incremental launches, and deployment of algorithms.
Clinical outcomes that an ML algorithm could predict
resemble a perpetually moving target. The clinical data,
including multiple patient cohorts and a variety of out-
comes, are updated daily or more frequently with evolving
statistics and ever-increasing observations (Santosh 2020).
Since the phenotype of COVID-19 deviates from typical
ARDS or other acute organ dysfunctions, existing models
of decompensation, risk of mortality, or clinical trajectory
prediction created for non-COVID-19 cohorts are not
guaranteed to maintain previously reported performance
(Wang et al. 2019; Zampieri et al. 2019; Tomasev et al.
2019; Mousavizadeh and Ghasemi 2020). Some currently
proposed diagnostic models to detect COVID-19 infection
in symptomatic patients excluded proportions of patients
with the disease or favored certain predictors, therefore
losing key information and potentially limiting perform-
ance in widespread screenings (Meng et al. 2020; Song
et al. 2020a; Lopez-Rincon et al. 2020; Batista et al. 2020).
Thus, adapting and training algorithms on this unique pa-
tient population is essential to construct effective predic-
tion models.
As patients move between a range of clinical settings

(outpatient clinics, EDs, floor units, ICUs), they generate
unique personal datasets that reflect their phenotypes
and require varying clinical resources and participate in
multiple decisions, ranging from trivial to potentially life
altering. In these settings and during each transition,
ML/AI can help clinicians, patients, and their families ef-
ficiently process all available data to generate informed,
evidence-based recommendations and participate in
shared decision-making to identify the optimal course of
action. In the age of COVID-19, this can be incorporated
into several opportunities across the spectrum of care
(Fig. 1a).
The first opportunity lies during initial screening and

evaluation of symptomatic people in outpatient facilities.

Development of ML models to risk-stratify these individ-
uals and separate low-risk patients from those at higher
risk for deterioration can enable focus on the needs of
approximately 15% that require more resource-intensive
care (Center for Disease Control and Prevention (CDC)
COVID-19 Response Team 2020). Identification of low-
risk patients can lead to increased utilization of tele-
health and virtual care to avoid unnecessary hospital ad-
missions (Dorsey and Topol 2016). Previous ML models
have already been developed to reduce avoidable initial
admissions (Ngo et al. 2019), predict risk of 30-day read-
missions (Frizzell et al. 2017; Golas et al. 2018), and im-
prove pharmaceutical prescriptions (Ribers and Ullrich
2019). Even disease diagnosis can be possible using
emerging ML/AI technology; Parkinson’s Disease can be
successfully detected by a smartphone-based monitoring
platform that extracts features from voice, gait, and reac-
tion time data (Zhan et al. 2018). These approaches sug-
gest the possibility of improving COVID-19-screening
phone calls and follow-up survey information (Rao and
Vazquez 2020). A model could predict the probability of
a confirmed COVID-19 diagnosis and its severity by tak-
ing answers from symptomatic individuals and amplify-
ing it with clinical information from electronic health
records (EHRs), including comorbidities (DeCaprio et al.
2020), complaints, and demographics (including geog-
raphy). An ML model could even predict levels of dys-
pnea over the phone with estimations of emotional
affect and cough sounds from speech already possible
(Fayek et al. 2017; Porter et al. 2019). The severity pre-
diction could also indicate the level of necessary care:
self-monitoring, outpatient doctor visit, or ED visit
(Greenhalgh et al. 2020). Prediction models can reduce
the number of patients that are admitted to already-
overloaded hospitals. However, this type of model may
be limited by lack of vital clinical information such as
oxygen saturation or severity of dyspnea, which is highly
subjective via self-report. Additionally, variability in the
exact time that patients develop symptoms after expos-
ure imposes additional challenges (Lauer et al. 2020). Fi-
nally, specific patient behavior could influence the
quality of data labels used for building ML algorithms.
For example, individuals may not call because they have
no or mild upper respiratory symptoms; studies estimate
that over half of COVID-19 infections are undocu-
mented (Li et al. 2020a). Conversely, individuals may be
advised to self-monitor but seek treatment, regardless.
These groups could lead to inaccurate labeling for train-
ing and testing ML algorithms; more widespread testing
and big data could reduce the effects of this hurdle.
The ED represents a second opportunity to apply ML/

AI to a data-rich, time-pressured environment where cli-
nicians are called upon to collect, assimilate, and analyze
large amounts of data. This begins at the point of triage,
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Fig. 1 (See legend on next page.)
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where severity of symptoms and the need for urgent
intervention are first assessed, to the continued course
of patient evaluation through vitals measurements and
laboratory results. The changing status of the patient’s
health culminates in the decision to either discharge the
patient or admit them to the hospital. If escalation of
care in the hospital is necessary, determining the most
appropriate environment (i.e., floor or critical care unit)
is intimately linked to assessing future risk of deterior-
ation. ML/AI models have been developed to be applied
at each of these phases within ED care; in triage, vitals
representing illness severity can predict resource needs
(Levin et al. 2018; Raita et al. 2019) while risk profiles
can be determined as new data is obtained (Janke et al.
2016). Lastly, patient condition while in the ED can be
used to calculate risk of deterioration or death (Brajer
et al. 2020). For patients with COVID-19, ML/AI can
provide decision support at each stage by calculating
likelihood of admission at triage, refining risk estimates
with real data from clinical evaluation, and predicting
the patient’s trajectory as well as the effects of prompt
ventilator use. A possible input to these models may be
chest X-rays and computed tomography (CT) images
from diagnosis and disease progression; CT severity
scores have been shown to identify patients with severe
cases of COVID-19 (Yang et al. 2020), and diagnostic
models based on CT images have been proposed to sup-
port diagnosis and monitor progression (Jin et al. 2020a;
Song et al. 2020b; Xu et al. 2020; Shan et al. 2020; Wang
et al. 2020; Ozturk et al. 2020;Jin et al. 2020, 2020a; Li
et al. 2020b; Shi et al. 2020a). Within the ED, assessing
the possibility of respiratory failure can help institutions
and clinicians prioritize and allocate scarce resources as
demand outpaces supply.
A third point of intervention lies in the transition from

the ED to the inpatient setting and throughout the pa-
tient’s stay. The staggering wave of admissions in this
pandemic is overwhelming even the most efficient of

hospital frontlines. Under normal conditions, hospitals
with a large influx of patients tend to struggle to manage
them in a timely manner (Morley et al. 2018). Studies
have shown that as the time to see admitted patients in-
creases, so does the risk for adverse events (Eriksson
et al. 2017). Any time delay in this crisis can lead to a
missed opportunity or limited time to save a life. ML/AI
techniques can augment the acumen of healthcare pro-
viders and aid hospitals in the Herculean task of man-
aging patient volume by calculating measures that can
prioritize patients and potentially decrease adverse
events. As patient numbers keep increasing, ML/AI
tools, based on ever-increasing ongoing vitals, labs, med-
ications, and orders (Fig. 1b), can be applied to calculate
risk scores for multiple time points. Short-term predic-
tions (4–8 h) can be used for nurses and physicians to
prioritize care. Mid-term predictions (12–24 h) can help
units identify patients with the least likelihood of
decompensation; this measure of stability can support
decisions by clinicians to adapt care on the path to
discharge. Lastly, long-term models (more than 24 h)
can help administrators allocate precious resources, such
as ventilators, beds, and staffing. Clinically predictive
tools already exist to predict mortality risks by calculat-
ing a score from Multilobular infiltration, hypo-
Lymphocytosis, Bacterial coinfection, Smoking history,
hyper-Tension, and Age (MuLBSTA) to separate pneu-
monia patients into relevant categories of care and guide
clinical decisions (Guo et al. 2019), and early work with
small patient cohorts of COVID-19 has led to models
that identify key clinical characteristics that can predict
severe cases (Yan et al. 2020; Jiang et al. 2020; Xie et al.
2020; Bai et al. 2020; Caramelo et al. 2020; Lu et al.
2020; Gong et al. 2020; Shi et al. 2020b). One particular
model—the Northwell COVID-19 Survival (“NOCOS”)
calculator – was built from demographic, laboratory,
clinical, and treatment data of over 5200 inpatients to
predict survival probability; seven variables from patient

(See figure on previous page.)
Fig. 1 a ML/AI in the patient care pathway. The black asterisks represent multiple decision points during the patient care pathway that could be
augmented by ML/AI tools. The green traces represent a COVID-19 negative diagnosis or recovery while the orange and red traces represent risk
stratification of patients by lower and higher risks of deterioration, respectively, as determined by a potential ML/AI model. Additional decisions in
the hospital include prioritization of care, allocation of resources, and estimation of prognosis. b An expanding COVID-19 database. Since March 1,
2020, there has been an increasing amount of COVID-19 patient data, shown here by new admissions and new medical data entries at Northwell
Health, New York’s largest health system, facilities. Given increasing hospital admissions (black trace, left y-axis), there have been hundreds of
thousands of new data entries per day (colored bars, right y-axis), including vitals, laboratory results, medication orders, and patient comorbidities.
This vast data allows a unique opportunity to implement ML/AI to support medical frontlines and healthcare administrators in the fight against
COVID-19. c Evolving patient profiles and discharge rates. Basic characteristics of the patient population changed during the progression of the
wave of new cases, which can affect performance of a predictive model. For example, the average length of stay for expired patients and those
discharged alive (dark blue with square markers and light blue with triangle markers, respectively, left y-axis) diverged in mid-April. Because of
these changes, a predictive model with good early performance may decline because of differences between patients hospitalized for three
weeks compared to less than a week. Also, an individual’s patient profile may have evolved significantly from hospital admission to those
timepoints later during hospitalization. Discharges per day (grey bars, right y-axis) increased with the pandemic’s peak and declined with reduced
numbers of new cases
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EHRs were identified as early predictors of survival, and
the easily comprehensible output of the calculator is be-
ing used by clinicians to provide critical decision support
(Levy et al. 2020). Finally, ML can assist healthcare pro-
viders with the most emotionally difficult conversations
with patients and their families: goals of care. By provid-
ing an objective measure of mortality risk, ML offers cli-
nicians, patients, and their families essential information
in this shared decision process.
While researchers in the field of digital medicine and

healthcare ML have built predictive models for decades,
the urgency to clinically operationalize them is novel.
Practices established to tackle COVID-19 can offer a
future path for clinical translation of ML/AI tools. The
ultimate goal of any model is to maximize patient out-
comes for the greatest number of patients within an ac-
ceptable ethical framework. However, the inputs to these
models can vary based on availability of equipment or
staff; heterogeneity in standards of care; responses to
anecdotes, personal communications, and preprinted sci-
entific manuscripts; and evolving government policies and
professional society guidelines. Such extreme variability in
inputs makes setting a fixed operating point, usually based
on clinicians’ acceptability of risk, very difficult. For these
reasons, models should be operationalized with frequent
and automated re-training and re-validation.
Another extremely important consideration is ensur-

ing that all development studies are scientifically and
ethically sound. Firstly, available data only represents pa-
tients that are admitted and treated. Data-driven models
may magnify current disparities in healthcare because
there is already less data to represent those with dimin-
ished access to care. This issue of equity can limit
generalizability of ML/AI models. Secondly, in an out-
break setting, access to any therapy is pressing but still
requires strong proof of efficacy (Lane et al. 2016). In
this public health emergency, rapid responses are crit-
ical, and testing of COVID-19 vaccines has been fast-
tracked to phase I trials for early spring of 2020 (Ahmed
et al. 2020; Fauci et al. 2020). This provides a compelling
precedent to accelerate the deployment of accurate ML
models. If an algorithm is proven on retrospective data,
it should be implemented into clinical translation for
validation and use as quickly as possible. It is crucial to
note, however, that an expedited process for model cre-
ation and validation can lead to inaccurate results, as
seen by many of the early projection models for the pro-
gression of COVID-19. To prevent errors and strengthen
the accuracy of models over time, active learning is re-
quired, with continued emphases on increased frequency
for re-training and re-validation as more data becomes
available. Moreover, different types of validations can
strengthen the stakeholders’ trust in a model’s predictive
performance. Prospective validation can address the

model’s stability over time, while external validation can
address the model’s clinical portability to various hospi-
tals and geographic locations. Whenever possible, both
types of validation should be carried out. This concern is
not only specific to COVID-19 related models but any
application of healthcare ML/AI.
Specifically, during the COVID-19 pandemic, basic

characteristics of the patient population can change dur-
ing the evolving stages of the patient wave, affecting the
performance of a predictive model (Fig. 1c). Throughout
April, both expired and discharged surviving patients
followed similar rates in discharges per day. However,
the average length of stay for these two cohorts in-
creased daily, but also diverged significantly by early
April, with the patients that expire after that date pre-
senting a five-fold increase in hospitalization duration,
compared to a four-fold increase for discharged surviv-
ing patients. Such a massive difference in an integral as-
pect of the dataset, like length of stay, can have a
profound effect in prognostic algorithms of arbitrary ho-
rizons; while early on in the pandemic, these algorithms
would perform very well, they would naturally degrade
later on. This decline is due to both the differences in
profile of patients that stayed on average 3 weeks in the
hospital compared to those that stay less than a week
and internal comparisons per patient, when analyzing
their medical profile at the beginning of their
hospitalization relative to the end. Figure 1c showcases
the unique characteristics of a COVID-19 dataset, as we
have captured it from our database. As shown, discharge
numbers increased and remained high during the pan-
demic’s peak.
Other potential challenges regard curating high fidelity

inputs that can produce reliable outputs for clinician
use. It will be necessary to perform automated data
scrubbing to all new data entries and establish efficient
deployment of updated algorithms. This goal must be
achieved by essential integration into standardized pipe-
lines of EHR platforms. The COVID-19 pandemic has
mobilized efforts for increasing patient data availability,
but these large amounts of new data require continuous
quality checks to ensure that desired outputs are
achieved. Without high quality data inputs, any model’s
output, especially those that rely on evolving databases
to increase accuracy, will suffer from garbage in, garbage
out (GIGO). In addition, outputs of any model must be
easy to evaluate and factor into traditional medical care.
An indexed value could represent a patient priority
based on probability of outcome. Priority scores can
guide allocation of care, ventilators, and beds as well as
designate patients to the appropriate medical depart-
ments (White and Lo 2020). Finally, amid imposed lock-
downs, maintaining communication between the ML
engineers, data scientists, and stakeholders, including
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hospital frontlines and healthcare administrators, can be
challenging. Sustaining increased productivity and mor-
ale is necessary for the success of all such endeavors.

Conclusions
While caring for thousands of COVID-19 patients, hos-
pital staff, nurses, physicians, administrators, scientists,
and engineers have also been pursuing ways to optimize
care to face the onslaught of daily new cases. ML and AI
is becoming more prevalent in healthcare and medicine,
and the worldwide COVID-19 crisis presents a critical
situation that demands implementation of ML ap-
proaches, whether applications are for medical treatment
research, patient care, allocating resources, or managing
hospital volume. Medical personnel in all clinical set-
tings, including doctors and nurses, need a support sys-
tem in a shared decision-making process that includes
patients and their families. Expanding datasets provide
an example of available information in this unique op-
portunity for deployment of an unprecedented “emer-
gency ML” effort. Northwell Health, New York’s largest
health system, serves multiple communities at the
world’s current epicenter of the COVID-19 pandemic
and maintains an example of a sizeable COVID-19 pa-
tient database—featuring vitals, laboratory results, or-
dered medications, and continuously captured and
updated demographic information, and it has already
been used to present characteristics and early clinical
outcomes of 5700 hospitalized COVID-19 patients in
the New York City area (Richardson et al. 2020). With
increasing health data, evidence-based prediction tools
trained and validated properly and often can guide over-
whelmed hospital frontlines and administrators to make
informed decisions in a challenging time. With the best
possible data and analytics, the field of ML/AI can be a
key ally in the fight to limit the devastating conse-
quences of COVID-19.
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