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Abstract

Background: Extracellular recording represents a crucial electrophysiological technique in neuroscience for
studying the activity of single neurons and neuronal populations. The electrodes capture voltage traces that, with
the help of analytical tools, reveal action potentials (‘spikes’) as well as local field potentials. The process of spike
sorting is used for the extraction of action potentials generated by individual neurons. Until recently, spike sorting
was performed with manual techniques, which are laborious and unreliable due to inherent operator bias. As
neuroscientists add multiple electrodes to their probes, the high-density devices can record hundreds to thousands
of neurons simultaneously, making the manual spike sorting process increasingly difficult. The advent of automated
spike sorting software has offered a compelling solution to this issue and, in this study, we present a simple-to-
execute framework for running an automated spike sorter.

Methods: Tetrode recordings of freely-moving mice are obtained from the CA1 region of the hippocampus as they
navigate a linear track. Tetrode recordings are also acquired from the prelimbic cortex, a region of the medial
prefrontal cortex, while the mice are tested in a T maze. All animals are implanted with custom-designed, 3D-
printed microdrives that carry 16 electrodes, which are bundled in a 4-tetrode geometry.

Results: We provide an overview of a framework for analyzing single-unit data in which we have concatenated the
acquisition system (Cheetah, Neuralynx) with analytical software (MATLAB) and an automated spike sorting pipeline
(MountainSort). We give precise instructions on how to implement the different steps of the framework, as well as
explanations of our design logic. We validate this framework by comparing manually-sorted spikes against
automatically-sorted spikes, using neural recordings of the hippocampus and prelimbic cortex in freely-moving mice.

Conclusions: We have efficiently integrated the MountainSort spike sorter with Neuralynx-acquired neural recordings.
Our framework is easy to implement and provides a high-throughput solution. We predict that within the broad field
of bioelectronic medicine, those teams that incorporate high-density neural recording devices to their armamentarium
might find our framework quite valuable as they expand their analytical footprint.
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Background
Functional understanding of neural ensembles requires
the ability to reliably measure the activity of single
neurons, as well as to discriminate the activity of many
neighboring neurons, across extended intervals of time
(Buzsáki, 2004; Csicsvari, et al., 2003). In vivo electro-
physiological techniques with extracellular electrodes
that measure action potentials (‘spikes’) and subthresh-
old oscillations have been used to record activity from
the brain of several mammalian species and have gener-
ated a tremendous amount of information (Cacucci
et al., 2008; O'Keefe and Dostrovsky, 1971; O’Keefe and
Nadel, 1976; Kunz, et al., 2021). Moreover, continuous
technological advances have ensured the lasting rele-
vance of this technique (Steinmetz, et al., 2021; van Daal,
et al., 2021). Indeed, brain recordings with tetrode arrays
have been adopted by many neuroscience laboratories
all over the world (Yamamoto and Wilson, 2008). After
obtaining a tetrode recording, spike sorting is a
mandatory step for the isolation of neuronal units. This
process begins by applying a band-pass filter followed by
a voltage threshold to detect all events which fall into
the frequency and voltage ranges containing neural
spikes. Following event detection, spikes are brought
into a spike sorting software package (Rey et al., 2015).
Most spike sorting algorithms use dimensionality reduc-
tion techniques, such as principal component analysis
(PCA), where the high dimensional features of spikes are
represented in a 2-dimensional or 3-dimensional space
for manual cluster cutting (Gray, et al., 1995; Quirk &
Wilson, 1999). Other software packages implement a
template matching approach (Laboy-Juárez, et al., 2019),
and some, such as Spike2 (CED, Cambridge, UK), offer
both PCA and template matching options. Events that
cluster together are assigned to a unit with an arbitrary
label, representing a putative neuron. During this
process, clusters or events which are either poorly
isolated or likely to correspond to background noise are
removed from further analysis.
Since the introduction of XCLUST, a pioneering spike

clustering program, by Matthew Wilson (Quirk &
Wilson, 1999), several spike sorting packages have been
developed using manual or semi-automated approaches.
Some commonly used packages include KlustaKwik
(Harris, et al., 2000), MClust (Redish et al., 2000), Offline
Sorter (Plexon, Dallas, TX), and Spike2 (CED). While
the manual approach has been the standard for decades,
there are notable drawbacks. A significant concern is the
lack of reliability, given that different manual operators
can have variable outcomes and error rates can be as
high as 30% (Harris, et al., 2000). The operator-
dependent nature of the manual approach may thus
negatively impact the objectivity and reproducibility of
the sorted data (Wood et al., 2004). Another concern

with manually-sorted spikes is the amount of time ne-
cessary to analyze datasets of any size. Cluster cutting is
a time-intensive process, which effectively acts as a
bottleneck in the analysis of acquired neural datasets.
Early semi-automated algorithms have continued to rely
on human intervention (Harris, et al., 2000; Hill et al.,
2012), and some have shown poor accuracy (Pedreira,
et al., 2012), resulting in a lasting dependence on manual
techniques by the majority of the systems neuroscience
community.
Recently, automated algorithms have been developed

that are both sufficiently accurate and have the ability to
sort data obtained from large arrays (Buccino et al.,
2020; Chaure et al., 2018; Chung et al., 2017; Pachitariu
et al., 2016; Rossant et al., 2016). Remarkably, these au-
tomated approaches have arisen during a period when
advancements in electrode technology have enabled sim-
ultaneous recording from hundreds to thousands of
densely packed recording sites, from which sorting data
would be excruciatingly laborious with previously stand-
ard methods (Berényi et al., 2014; Chung, et al., 2019;
Steinmetz, et al., 2021). Smaller arrays also benefit from
automated algorithms, as the same approach can be ap-
plied to tetrodes for fast and objective results. Mountain-
Sort is a particularly attractive package as it has shown
to be the most accurate method thus far to sort rela-
tively low-channel-count datasets (Buccino et al., 2020;
Chung, et al., 2017; Magland, et al., 2020) and, critically,
it requires no user input or changing of parameters
across recordings (Chung, et al., 2017).
While MountainSort has the potential to be an effect-

ive and highly useful spike sorting package, it is still in
the development phase and does not have a fully inte-
grated support platform for importing neural recordings
obtained across different recording systems and setups.
One software package in development to address this
issue is SpikeInterface. This software is designed to im-
port data across a variety of acquisition systems, and
then send the data to any of the SpikeInterface-
supported spike sorters (Buccino et al., 2020). While
SpikeInterface is designed to be a unified framework for
spike sorting, with a high degree of flexibility, our
framework offers advantages in its simplicity. Using the
framework presented in this study, the end-user can
automatically merge files of recordings from the same
mouse on the same day, and send many recordings into
MountainSort in a single run. After sorting, spikes can
be easily integrated into existing data analysis pipelines.
This is all done automatically with no coding needed by
the end-user. Thus, the purpose of this study is to pro-
vide a simple-to-execute framework for using Mountain-
Sort with Neuralynx-acquired neuronal data. Moreover,
we validate this framework with a qualitative comparison
of manually-sorted spikes against automatically-sorted
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spikes in neural recordings of the Cornus Ammonis 1
(CA1) region of the hippocampus and the prelimbic (PL)
cortex in freely-moving mice.

Methods
Ethical statement
Animal experiments were performed in accordance with
the National Institutes of Health (NIH) Guidelines under
protocols approved by the Feinstein Institutes for
Medical Research Institutional Animal Care and Use
Committee (IACUC). Our Animal Research Program is
registered with the Department of Health and Human
Services (DHHS), Office of Laboratory Animal Welfare
(OLAW), U.S. Department of Agriculture (USDA
#21R0107), Public Health Service (PHS #A3168–01) and
New York State Department of Health (NYSDOH #A-
060).

Experimental animals
All animals used in this study were male C57BL/6 mice
(The Jackson Laboratory, Bar Harbor, ME) of 3 months
of age. Mice were maintained on a reverse light cycle
(dark: 9:00–21:00) with ad libitum access to food and
water. All experiments were carried out during the dark
phase of the light cycle. Prior to implanting, mice were
housed in groups of four, and were single-housed after
implanting. All mice were gently handled prior to sur-
gery (15-min sessions during 3 consecutive days).

Microdrive preparation
Custom-designed microdrive bodies were fabricated
using a 3D printer (Form-2, Formlabs, Somerville, MA).
The design of the microdrive body was specific to the
brain region being recorded. Polyimide tubing and an
electrode-interface-board (Omnetics EIB-16, Neuralynx,
Bozeman, MT) were attached to each microdrive body.
Tetrodes were wound from 90% platinum, 10% iridium
wire (diameter 17.8 μm; California Fine Wire, Grover
Beach, CA) and threaded through the polyimide tubes to
create a movable 4-tetrode array (Chang, et al., 2013).
On the day of implantation surgery, a ‘final cut’ of the
tetrodes was made followed by electroplating with plat-
inum black solution (Neuralynx) to an impedance under
300 kΩ.

Surgery
All surgical procedures were performed under isoflurane
anesthesia. The animal’s fur was removed from the sur-
gical site, which was then scrubbed with betadine and
isopropyl alcohol. An incision was made, exposing the
skull, and a layer of C&B-Metabond (Parkell, Edgewood,
NY) was applied and allowed to dry. Two craniotomies
were made, one over the cerebellum and the other over
the region targeted for tetrode implantation. The coordinates

used for dorsal CA1 were [AP, − 2.18, ML, − 1.5]
from bregma, and the coordinates for the PL cortex
were [AP, + 1.98, ML, − 0.25] from bregma. After in-
stalling the ground screw into the craniotomy located
in the occipital bone, the microdrive was aligned so
that the tetrodes were directly above the intended
region, and the microdrive was secured in place with
dental acrylic. As the dental acrylic hardened, mice
were given injection of buprenorphine (0.05 mg per
kg) and saline (0.5 mL) subcutaneously. Implanted
mice were observed for three days following surgery
and provided with hydrogel cups containing meloxi-
cam for pain relief. Tetrodes were lowered to their
target depth, in CA1 or PL cortex, over the course of
the next three days.

Behavioral tasks
Neural recording during behavioral tasks were typically
performed 7–10 days after the surgery. Mice with tet-
rodes targeted to CA1 (n = 4) were studied in a linear
track (80 cm long). For this task, mice experienced a first
‘Run’ session (moving from one end of the track to the
other 16 times; 8 runs ‘to the left’, 8 runs ‘to the right’),
a ‘Rest’ period (10 min in the homecage), and a second
‘Run’ session (16 times, 8 runs ‘to the left’, 8 runs ‘to the
right’), for a total of 32 runs across the length of the
track. Mice with tetrodes targeted to the PL cortex (n =
4) were pre-trained in a T maze, before being implanted.
The task consisted of running from the start point of the
stem toward the decision point and then turning right,
or left, to find a sweet food reward that was located at
the end of the right arm. Mice were mildly food-
deprived (food was removed for 3–4 h before testing),
and were tested in the T maze until they reached a per-
formance accuracy of 75%, which took 3–4 days (8 trials
per day). One week after implantation, animals were
tested in the T maze (8 trials in one day).

Data acquisition
Mice were recorded using a headstage pre-amplifier
(Neuralynx), which was connected to a programmable
amplifier (Lynx-8, Neuralynx) and a Windows PC
running the Cheetah acquisition software (Neuralynx).
In this study, we used the Cheetah system and a 16-
channel setup comprising of 4 tetrodes, each featuring 4
closely spaced recording channels, along with an overhead
camera. The acquisition setup generated 3 datastreams:
continuously-sampled neural signals, discretely-sampled
spikes, and the animal’s XY location. For the continuous
data, the 16 channels were acquired at 30 kHz and con-
tained the voltage for each channel at every timestamp.
For the spike data, the 16 channels were first band-pass
filtered (600Hz to 6 kHz) and only the fluctuations that
surpassed the assigned voltage threshold (120 μV) were
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captured. For the XY data, video tracking was achieved via
a ceiling-mounted camera which tracked the position of
an LED (light-emitting diode) mounted to the headstage
in the Cheetah software at 30Hz. The raw video footage
was separately saved as well.

Hardware and software used for data analysis
After acquisition, data were transferred to a Linux ma-
chine (running Ubuntu 18.04.5 LTS) for sorting using
the automated framework. On the Linux system, data
were prepared for sorting with MountainSort, using
MATLAB 2017b (MathWorks, Natick, MA), passed
through the MountainSort pipeline, and the sorted
spikes were saved as text files for further analysis. Spike
sorting using the manual method was completed using
Spike2 (version 8, Cambridge Electronic Design,
Cambridge, UK) on a PC running Windows 10 (Micro-
soft, Redmond, WA). Sorted spikes were analyzed using
NeuroExplorer version 5 (Plexon, Dallas, TX) and
MATLAB on a PC running Windows 10. Final results
were processed in MATLAB, Excel 2013 (Microsoft),
and Origin 2019 (OriginLab, Northampton, MA).

Statistical analysis
Data are presented as mean ± standard deviation (SD),
or median and quartiles (Q1 and Q3), as indicated. To
examine statistical significance, which was defined as
P < 0.05, we used two-sample ANOVA and Student’s
t-test in samples that were normally distributed.
Normality was assessed using the Shapiro-Wilk nor-
mality test. We also used nonparametric tests, namely
Mann-Whitney U test and Kolmogorov-Smirnov test,
in samples that were not normally distributed. All
statistical tests were performed in OriginPro software
(version 2021b; OriginLab Corporation, Northampton,
MA).

Results
The analysis process for neural data consists of multiple
steps, using different software packages as required. A
central goal of this work is to provide a roadmap for
analysis of single-unit data, with a focus on how we
have concatenated the Cheetah system with MATLAB
and the automated spike sorting technology, Mountain-
Sort. The overall process begins with the acquisition of
neural data, followed by spike sorting, and finally, the
computation of spike parameters which is done in a
manner specific to the phenomenon being studied. The
code used in this study can be found at: GitHub: spike_
sorting n.d..

Description of the cheetah file formats
The Cheetah system generates three groups of data
(Fig. 1). The continuous datastream is saved in the files

named CSC1.ncs up to CSC16.ncs (Neuralynx con-
tinuously sampled), which comprise the voltage at every
timestamp (sample rate, 30 kHz) for each separate chan-
nel. The spike datastream is saved in the files named
TT1.ntt up to TT4.ntt (Neuralynx tetrode), in which
each file represents a tetrode and contains the spike in-
formation across the four channels of a particular tet-
rode. The XY datastream is saved in the file VT1.nvt
(Neuralynx video tracking), which contains the position
of an LED mounted onto the headstage on the animal’s
head.

Overview of the spike sorting methods
Both the automated spike sorting framework and man-
ual spike sorting method follow similar overall trajector-
ies. The raw data are saved by the Cheetah system, then
brought into the spike sorting package, in which the
spikes are sorted and exported for final analysis in Neu-
roExplorer and MATLAB, depending on the parameter
in question (Fig. 1).
For the automated spike sorting framework, only the

continuous channels are used (Fig. 1a). The ncs files are
imported into MATLAB, they are merged, and then
converted to the mda format (e.g., raw.mda). The files
are then passed through MountainSort where pre-
processing and spike sorting occur. Finally, the sorted
spikes are saved as text files (e.g., spiketimes.txt)
which allows for easy importing into most software
packages. We use NeuroExplorer and MATLAB to
analyze sorted data. Within NeuroExplorer, the analysis
of spikes, along with the position data from the video
feed (e.g., VT1.nvt), can be used to generate place field
maps, autocorrelograms, and many other visualizations.
From that point, the data can be exported into
MATLAB for quantitative analysis such as calculation of
place field areas or spatial information. For other forms
of analysis, sorted spikes and position data are imported
directly into MATLAB without passing through
NeuroExplorer. Note that in order to import spikes
from spiketimes.txt into NeuroExplorer, the
correct option for importing data must be set. This
can be done as follows: Open NeuroExplorer. Under
the View tab, click on Data Import Options. In the
window, click on the File Extensions box. Scroll down
to txt and select the following option: Text File
(pairs<channel> < timestamp>), and then click OK to
exit the window.
For the manual spike sorting method (Fig. 1b), only

the discrete spike channels from Cheetah are imported
straight into Spike2 where file merging, spike sorting,
and exporting of sorted units are completed. Our team
has historically used manual spike sorting platforms
such as Offline Sorter or KlustaKwik (Chang and
Huerta, 2012; Faust, et al., 2013). In recent years, we
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have exclusively used Spike2 which has proven to be a
versatile software for sorting and visualizing spike data.
In Spike2, we use PCA to generate the components for
cluster cutting. The spikes can be easily viewed as either
overlaid waveforms or as points across time. If different

recording sessions from the same day need to be merged
together for sorting and then split back into the original
sessions, this is all done within the Spike2 environment.
Following completion of manual sorting, the spikes are
exported for downstream analysis.

Fig. 1 Overview of data analysis procedure. a, Automated spike sorting using MountainSort. Continuously sampled signals are collected in
Cheetah, prepared for the MountainSort pipeline in MATLAB, sorted in MountainSort, and finally passed through MATLAB again prior to final
analysis. b, Manual spike sorting using Spike2. Discrete spike channels are imported into Spike2, where all preprocessing takes place. Exported
spikes are used for final analysis
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Data preparation for MountainSort
The automated spike sorting process begins with the 16
continuously-sampled channels which are saved in the
ncs format (Fig. 2a). In principle, these files contain the
information about local field potential and the spike sig-
nals, but the spikes have not been isolated from the rest
of the recording yet. The continuous channels are
imported into MATLAB and the data files are merged
according to the principle that all the recording sessions
from a given mouse, obtained in the same day, are
joined together. The merged files are then converted
from the Neuralynx ncs data format into the mda
(multi-dimensional array) format, which is compatible
with MountainSort. Merging files is done so that spikes
which may originate from the same neurons, can be
clustered together, with the use of the m2021_mer-
geandconvert.m script (Fig. 2). This script was designed
with tetrodes in mind, and the number of tetrodes used in
the recording can be specified at the top of the script where
indicated. If other recording configurations are used, the
number of channels per n-trode may be altered as well,
with 4 channels being equivalent to a tetrode. The input for
this script follows a simple organization scheme. All of the
experiments to be sorted need be placed into a single par-
ent folder. Within the parent folder, recording sessions
from the same mouse on the same day are grouped into in-
dividual ‘mouse & day’ folders (Fig. 2). Recording files go in
the session folder with no additional subfolders, as is saved
by default by the Cheetah system. Next, the m2021_mer-
geandconvert.m script is opened in MATLAB. The line
asking for the parent folder needs to be changed to reflect
the location of the parent folder stated above. Both the m_
2021_mergeandconvert.m and m2021_ms_out_
timestamps.m scripts require the folder spike_sort-
ing_dependencies to be included in the MATLAB file
path.
The m2021_mergeandconvert.m script first reor-

ganizes the continuous data on a tetrode-by-tetrode
basis so that each of the 4 recording channels from each
tetrode is placed into an individual subfolder. Next, the
ncs files (CSC1.ncs and so on) are imported into the
MATLAB environment as variables using the mex files
provided by Neuralynx. For each mouse & day folder,
the raw continuous channels are imported and merged
into a single [1 X M] variable. These files are then saved
into the MountainSort-compatible format, as raw.mda,
in which each file contains the 4 channels of a single tet-
rode for an entire mouse & day unit of recording. The
raw.mda files are placed into folders created for each
tetrode (e.g., tt1, tt2, tt3, tt4) in the mouse & day folder
(Fig. 2a). Along with the mda files, three other files are
generated for each tetrode. The first file, geom.csv,
contains the electrode geometry for the recording, which
is set to resemble the tetrode recording configuration. The

second file, params.json, contains the sampling rate of
the recording (in our case, 30 kHz) as well as the direction
of spike occurrences (positive or negative). Both files are
necessary for MountainSort. The third file, t_info.csv,
gives the start and end time of each recording session for
the mouse & day, and it is used (after MountainSort) to
separate the merged files back into their original recording
sessions (Fig. 2b). For each run of the m2021_mer-
geandconvert script, a file titled runsort.sh is
generated. This file contains the file paths needed to input
each tetrode into MountainSort, as well as paths for the
output files generated by MountainSort.
After running the m2021_mergeandconvert script,

the data are ready for the spike sorting pipeline. Prior to
sorting any experiments, MountainSort needs to be in-
stalled according to: GitHub: sorting_pipeline n.d.. After
installation, this pipeline can be executed by moving the
runsort.sh file into the sorting_pipeline folder,
and executing this file in the terminal. The run-
sort.sh file then leads MountainSort to input the
raw.mda, params.json, and geom.csv files, run
the pipeline, and generate a firings.mda output for
each tetrode, which contains the timestamps for the fir-
ing times for each sorted unit (Fig. 3a).

Interpretation of the sorted spike data
Following MountainSort, the firings.mda files are
saved in an appropriate format for further analysis. This
is achieved by running the m2021_ms_out_time-
stamps.m script. The merged and sorted files are first
split up into sessions as originally recorded (Fig. 3b). To
ensure compatibility with multiple analysis programs,
the output is saved as a text file titled spiketi-
mes.txt. This file contains two columns, which make
up [unit ID, timestamp] pairs (Fig. 3c). This file struc-
ture can be imported into a variety of analysis packages
including MATLAB and NeuroExplorer. The waveforms
are not exported with this dataset, allowing for fast com-
putation and small file sizes. If waveforms need to be
viewed, a MATLAB-based waveform viewer is available
at: GitHub: matlab_waveforms n.d..
The waveforms are found by matching the timestamp

to the raw.mda data for each isolated unit. From there,
the waveforms are saved as mat files in MATLAB and
can be plotted as overlaid individual waveforms, or as
the average waveform for each single-unit. Other wave-
form viewing options are currently being developed and
may be available on the GitHub page for the Flatiron In-
stitute: GitHub: Flatiron Institute n.d..

Validation of the automated framework with CA1
recordings
Neural signals were recorded in the stratum pyramidale
of CA1 in mice (n = 4) that were running along a linear
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Fig. 2 (See legend on next page.)
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track (Fig. 4a). The spiking activity was used to compare
the output of the automated framework against a man-
ual sorting method. We show several examples of single-
units, chosen randomly, which were obtained with the
MountainSort pipeline (Fig. 4b) and manually-sorted
with Spike2 (Fig. 4c). Manual spike sorting was per-
formed by experienced operators and the final results
were checked for quality by two independent observers.
Comparison of single-units sorted automatically and
manually, during 16 recording sessions (Fig. 4d), re-
vealed that the total number of single-units per session
was not significantly different between groups (Fig. 4d,
top; automated = 32.31 ± 11.85 [mean ± SD], range = 18–
58; manual = 43.31 ± 12.35, range = 23–74; t = 2.13, P =
0.05, paired t test). However, comparison of the spike
amplitudes, defined as the peak-to-peak voltage of the
averaged waveform from each sorted unit, showed that
the automated framework sorted single-units of sig-
nificantly higher amplitude than the manual method
(Fig. 4d, bottom; automated: median = 0.35, Q1–Q3 =
0.22–1.32; manual: median = 0.19, Q1–Q3 = 0.15–0.25;
d = 0.55, Z = 3.55, P = 3.49 × 10− 12, Kolmogorov-
Smirnov test).
We used the place cell properties of the hippocampal

single-units sorted automatically (MountainSort pipe-
line) and manually (using Spike2) for direct comparison
of the output from both methods. For illustrative pur-
poses, two pairs of single-units with place fields in close
proximity across methods were selected (Fig. 5a, b). In
one case (Fig. 5a), the two place cells have similar firing
rates as a function of position of the mouse along the
linear track (Fig. 5a, left) and display a well-defined
place field (at ~ 70-cm on the track), with the peak firing
rate occurring as the mouse moves from right to left.
Moreover, their waveforms (Fig. 5a, next-to-left) are
highly similar across the 4 channels of the tetrode when
comparing the automated and the manual traces. Their
autocorrelograms (Fig. 5a, next-to-right) show few re-
fractory period violations but appear different depending
on the sorting method, which is likely the result of
MountainSort clustering more spikes into the single-unit
when compared to manual sorting operators. Analysis of
all spike events during a 5-min period shows that the
spike amplitudes for the two sets are statistically

different (Fig. 5a, right; automated = 0.103 ± 0.03
[mean ± SD]; manual = 0.164 ± 0.018; F = 2.81, P =
6.65 × 10− 9, two-sample ANOVA). Notably, the spikes
appear to fire in bursts, as would be expected of hippo-
campal place cells, with the automated unit showing
more pronounced bursting, and also more variance, than
the manual unit. This example suggests that the auto-
mated framework is more accepting toward clustering
spikes of various amplitudes into a single-unit when
compared to the manual method. The second example
(Fig. 5b) depicts two place cells with multiple place
fields, as revealed in their firing profiles (Fig. 5b, left).
The primary place field is near the center of the track
(20–40 cm), when the mouse moves from right to left,
but relatively high firing rates occur in other regions of
the track as well. Although the main place field is similar
across sorting methods, the large differences in extrane-
ous activity suggest that the single-units are not opti-
mally clustered. The waveforms (Fig. 5b, next-to-left)
show high-amplitude traces in channels 1 and 2, but the
manually-sorted waveforms also have high amplitudes in
channels 3 and 4 compared to the automated traces.
The autocorrelograms (Fig. 5b, next-to-right) show few
refractory period violations but the shapes are different,
with the automated unit featuring more firing close to
zero, which suggests a greater tendency to burst,
whereas the manual unit displays a firing pattern that is
spread through the autocorrelogram. Analysis of all
spike events during a 5-min period of recording shows
that the two sets are statistically different (Fig. 5b, right;
automated = 0.231 ± 0.092 [mean ± SD]; manual =
0.329 ± 0.048; F = 3.575, P = 1.65 × 10− 46, two-sample
ANOVA). The bursting nature of the single-units is evi-
dent in both methods, but there is more variance in the
amplitude of the automated unit. It is possible that in
both cases, spikes arising from different neurons were
clustered as the same unit. The higher extraneous firing
in the manual unit, as well as the differences in the
waveforms across sorting methods, strongly suggest that
more inappropriate spikes were included in the manual
method compared with automated sorting.
When counting the number of single-units classified

as place cells across 7 sessions in the linear track, we
found that the automated and manual sorting methods

(See figure on previous page.)
Fig. 2 Merging and converting data prior to automated spike sorting. a, Organization and preparation of data for MountainSort pipeline. Sessions
from the same mouse on the same day are placed into the same folder, with the data files organized in each session folder just as they are
saved by Cheetah. The parent folder containing all of the ‘mouse & day’ subfolders is input into MATLAB to merge and convert the data. The
output files are organized by tetrode, and saved in the mouse & day folder as they contain the signals acquired for all sessions within the folder.
b, The m2021_mergeandconvert.m script imports the CSC.ncs files and saves the merged data as raw.mda. Three other files are saved;
params.json contains the sample rate and spike direction, geom.csv indicates the tetrode geometry, and t_info.csv contains the start and end
times of each recording that are used to split the merged files for session-by-session analysis. The lower panel depicts the
m2021_mergeandconvert.m script to be run
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yielded similar quantities of single-units per recording
(Fig. 5c; automated: median = 11, Q1–Q3 = 7–15; man-
ual: median = 11, Q1–Q3 = 9–16; U = 21, Z = 0.38, P =
0.7, Mann-Whitney U test). Only 2 sessions behaved as
outliers, with the number of single-units varying sub-
stantially across methods (Fig. 5c; automated with 30 vs.

manual with 9; automated with 6 vs. manual with 17).
While there are similarities and differences among spikes
sorted with the two methods, neurons act together in
groups, so it is important to view results at the ensemble
level as well as that of the individual neuron. By normal-
izing the firing rates of each unit and sorting all units by

(See figure on previous page.)
Fig. 3 Automated sorting framework. a, The files raw.mda, params.json, and geom.csv are imported into the MountainSort pipeline, which
includes both pre-processing and spike sorting. The MountainSort pipeline outputs firings.mda files, which contain the unit IDs and
timestamps of sorted spikes. The designated input and output folders are entered into the runsort.sh script, as depicted in the bottom of
the panel. b, Using the m2021_ms_out_timestamps.m script, sorted files are split back up into the original recording sessions according to
the t_info.csv file. Split files are saved as spiketimes.txt, for easy transfer to other software package for final analysis. The
m2021_ms_out_timestamps.m script is shown in the bottom of the panel. c, Output spiketimes.txt files are formatted as two
columns of unit ID, timestamp pairs

Fig. 4 Validation of the automated framework with hippocampal recordings. a, Schematic depicting tetrode placement in the CA1 region
(indicated by yellow oval) and recording paradigm in the linear track. b, Representative waveform overlays of single-units sorted using the
automated framework. c, Waveform overlays of single-units sorted using the manual method. d, Top, number of single-units sorted per
recording session using the automated framework (AF, green) or manual spike sorting (MSS, black). Bottom, amplitudes of mean waveforms
sorted using the automated framework (green) or manual method (black)
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the location of their peak firing rate, the activity of place
cells in the linear track can be viewed as an ensemble of
units (Fig. 5d). We implanted 4 mice and recorded as
they ran the length of the track and generated place cell
ensembles using each sorting method. Here we find that,

at the ensemble level, the activity of the place cells ap-
pears similar across both methods. Remarkably, in the
‘automated spike sorting’ ensemble, place fields appear
better isolated compared to the ‘manual spike sorting’
ensemble (Fig. 5d), as suggested by the reduced

Fig. 5 Hippocampal CA1 recordings in freely-moving mice. a, b, Representative single-units showing the firing rates along the length of the track
(left panels), average waveform in each channel of a tetrode (next-to-left panels), autocorrelogram (next-to-right panels; pink lines represent
refractory period), and amplitudes of spikes over time (right panels). Automated units are displayed in green and manual units are shown in
black. a, Representative single-units likely representing the same putative neuron sorted with automated and manual methods. b, Similar units
likely to represent different neurons across automated and manual methods. c, Number of single-units per recording session using the
automated framework (green) or the manual method (black). d, Population of place cells recorded from mice (n = 4) running the linear track.
Each row represents normalized spike activity of one single-unit, where rows are organized by the position of the peak firing rate for each unit
along the linear track. Sorted populations of place cells appear similar across automated and manual methods
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extraneous activity outside of the main place fields for
each unit. Importantly, both sorting paradigms result in
ensembles covering the full length of the track.

Validation of the automated framework with PL cortex
recordings
We sought to compare the automated framework
(MountainSort pipeline) and a manual sorting method
(Spike2) using recordings from the PL cortex, a region
located within the medial prefrontal cortex. Prior to sur-
gery, the mouse was trained to go to the right arm in
the T maze. Tetrodes were implanted into the PL cortex,
and the freely-moving mouse was tested in the T maze

(Fig. 6a). We examined sorted units based on their activ-
ity as the animal navigated from the start point (in the
stem) toward the reward (end of the arm). For illustra-
tive purposes, a pair of single-units that seem to have
similar properties across methods are shown (Fig. 6b). In
this example, the automated unit refers to a neuron that
is sorted using MountainSort (Fig. 6b, top) and the
manual unit is sorted with the manual method (Fig. 6b,
bottom). The waveforms from the automated unit are
nearly identical to the waveforms of the manual unit,
and the autocorrelograms are similar as well, although
the automated unit displays more firing and bursting
(Fig. 6b). By plotting the spike activity of the example

Fig. 6 Prelimbic cortex recordings in freely-moving mice. a, Schematic depicting tetrode placement in the PL cortex and recording paradigm in
the T maze. The yellow line indicates the point at which the mouse chooses to go left or right. b, Representative average waveforms and
autocorrelograms of sorted units, likely representing the same putative neuron, across automated and manual methods; TT1_1, and so on,
indicate tetrode channel numbers. The pink line represents the refractory period. c, Raster plots for single-units in panel b. Each row represents a
trial in the T maze and each tick is a spike. Notice that the trials are aligned to the timepoint indicated by the yellow line (4 s), which corresponds
to the moment that the mouse arrives at the intersection of the stem with the arms of the T maze in each trial (as in panel a)

Strohl et al. Bioelectronic Medicine            (2021) 7:17 Page 12 of 15



units as trial-by-trial raster plots, one can observe their
dynamic activity (Fig. 6c). Each row of the raster repre-
sents the firing of the unit during a trial in the T maze,
and the center of the plot corresponds to the time when
the mouse is at the intersection of the stem and the
arms of the T maze (yellow line in Fig. 6a, c). Statistical
comparison shows that the numbers of isolated spikes
per trial are not significantly different between the two
sets (Fig. 6c; automated: median = 27.5, Q1–Q3 = 14.25–
42.5; manual: median = 15.5, Q1–Q3 = 13.25–23.5; U =
45, Z = 1.315, P = 0.189, Mann-Whitney U test). Not-
ably, the automated unit shows quite a similar pattern of
activity across multiple trials, which highlights the reli-
ability of the automated method in isolating a well-
behaved unit. In contrast, the manual unit displays a
more widespread pattern of spiking across the trials,
which would be indicative of a poorly-isolated neuron.

Discussion
We have designed a novel framework to smoothly
combine the acquisition of neuronal signals from tetrode
recordings of freely-moving mice, using the Cheetah sys-
tem (Neuralynx), to the automated spike sorting pipeline
MountainSort (Chung et al., 2017). It is clear that auto-
mated spike sorting has become a necessity for medium
and large-scale extracellular neural recordings, as it in-
volves the extraction of (ideally) all the action potentials
generated by an individual neuron from an ocean of ac-
tivity in the extracellular recordings. We provide a
detailed roadmap of the steps, from data acquisition
to file managing between the different software plat-
forms (Cheetah, MATLAB, MountainSort, and Neu-
roExplorer). In short, our solution provides full
integration of MountainSort-based spike sorting to
Cheetah-based acquisition of neuronal signals in mice.
The framework presented in this study is not
intended to be generalizable across multiple acquisi-
tion systems and spike sorters, but rather it is de-
signed to be a specific solution for users of Neuralynx
systems. The advantage of our simple approach is
that in a single run, multiple recordings can be
merged, sorted, and exported, with minimal user in-
put or troubleshooting. Moreover, the framework does
not require the end-user to create any new scripts of
their own, which is a common necessity with other
spike sorting frameworks.
The framework is intended to be completely compat-

ible with existing analysis software; therefore, we convert
sorted spikes from the mda format (used by Mountain-
Sort) to a simple txt format. While there is indeed a
network of analysis tools being developed around Moun-
tainSort, these packages are still in the development
phase. Furthermore, many established labs need a way to
seamlessly implement state-of-the-art automated spike

sorting methods in a manner compatible with existing
analysis processes. In our case, we use NeuroExplorer
and MATLAB, both of which are widely used programs
for the analysis of neural data. Thus, we have created an
original end-to-end framework to integrate the auto-
mated spike sorting technology of MountainSort with
Cheetah-acquired recordings into a data analysis frame-
work consisting of widely-used software packages.
There are several benefits to using the automated

pipeline. Critically, automated spike sorting provides a
repeatable and objective methodology, in contrast to
manual methods which might be quite subjective.
Manually sorting spikes yields variable datasets among
different operators, even when the operators have sig-
nificant experience with the technique. Another import-
ant benefit regards to the amount of time taken to sort
datasets of almost any size. Manually sorting is a slow
and user-intensive process. Each recording can take a
period of user-input time ranging from several minutes
up to a few hours to finish, making for a time-intensive
process. In contrast, using the automated framework,
multiple recordings can be quickly sorted in a single
run. In this scenario, MountainSort processes each re-
cording in a period of time shorter than the recording it-
self, but the user does not need to be actively working
during this time period. The user only needs to set up
the files to be recorded, reducing the user-input time to
mere minutes per recording.
We have compared the results of the automated

spike sorting framework with a manual spike sorting
platform we have used for several years in our labora-
tory. Using either approach, we can isolate single-unit
activity in two different brain regions, the hippocam-
pus and the PL cortex. When we compared the
number of units sorted per session, we found similar
numbers of automated units and manual units for
most sessions, but there were some exceptions. In
particular, there were two sessions that stood out as
outliers. For one of these outliers, the automated
framework sorted more single-units, whereas for the
other, the manual method sorted more single-units.
While there may be differences at the level of each
single-unit, we can identify units isolated with similar
waveforms across both algorithms. These units also
show similar activity in behaviorally relevant tasks
such as the linear track or T maze. Furthermore,
when viewed at the ensemble level, the datasets look
largely similar with only slight variations in the preci-
sion of firing.
We think that automated spike sorting platforms are

poised to become a critical component in the neurosci-
entist’s toolkit, considering that within the next decade,
we will very likely experience an exponential increase in
the size of the recording arrays (Alivisatos et al. 2013;
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Steinmetz et al., 2021). With the next generation of
brain probes including up to thousands of recording
sites, the sheer complexity of the datasets is bound to be
too large for manual sorting, or even semi-automated
methods, to be capable of processing them. It seems ap-
parent that automated spike sorting needs to become
easy to use and properly validated across different acqui-
sition setups, brain regions and mammalian species. In
this respect, we have presented a complete automated
framework for sorting neural spike data acquired from
Neuralynx-based systems. Our framework is easy to im-
plement and provides a high-throughput solution. We
predict that within the broad field of bioelectronic
medicine, those teams that incorporate high-density
neural recording devices to their armamentarium might
find our framework quite valuable as they expand their
analytical footprint.

Conclusions

� We present a complete framework for automated
spike sorting using the MountainSort package, with
all the code freely-available in the GitHub
repository.

� The toolset delivers automatically-sorted spikes from
recordings obtained with a Cheetah-based system,
and exports the sorted spikes in a format which is
highly compatible with existing data analysis
routines.

� Integration of automated spike sorting software is a
critical step in the analysis of neural data, and
becomes increasingly important as the size and
complexity of datasets continues to increase with
new electrode technology.

� An improved understanding of the neural signals
obtained with tetrode recordings within the brain
will be paramount for any bioelectronic approaches
targeting brain systems.
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