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Robotic Kinematic measures of the arm in
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Abstract

Background: Effectiveness of robotic therapy and transcranial direct current stimulation is conventionally assessed
with clinical measures. Robotic metrics may be more objective and sensitive for measuring the efficacy of
interventions on stroke survivor’s motor recovery. This study investigated if robotic metrics detect a difference in
outcomes, not seen in clinical measures, in a study of transcranial direct current stimulation (tDCS) preceding
robotic therapy. Impact of impairment severity on intervention response was also analyzed to explore optimization
of outcomes by targeting patient sub-groups.

Methods: This 2020 study analyzed data from a double-blind, sham-controlled, randomized multi-center trial
conducted from 2012 to 2016, including a six-month follow-up. 82 volunteers with single chronic ischemic stroke
and right hemiparesis received anodal tDCS or sham stimulation, prior to robotic therapy. Robotic therapy involved
1024 repetitions, alternating shoulder-elbow and wrist robots, for a total of 36 sessions. Shoulder-elbow and wrist
kinematic and kinetic metrics were collected at admission, discharge, and follow-up.

Results: No difference was detected between the tDCS or sham stimulation groups in the analysis of robotic
shoulder-elbow or wrist metrics. Significant improvements in all metrics were found for the combined group
analysis. Novel wrist data showed smoothness significantly improved (P < ·001) while submovement number
trended down, overlap increased, and interpeak interval decreased. Post-hoc analysis showed only patients with
severe impairment demonstrated a significant difference in kinematics, greater for patients receiving sham
stimulation.

Conclusions: Robotic data confirmed results of clinical measures, showing intensive robotic therapy is beneficial,
but no additional gain from tDCS. Patients with severe impairment did not benefit from the combined intervention.
Wrist submovement characteristics showed a delayed pattern of motor recovery compared to the shoulder-elbow,
relevant to intensive intervention-related recovery of upper extremity function in chronic stroke.
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Background
Every year 15 million people suffer a stroke globally, with
two-thirds experiencing residual impairment (World
Health Organization, 2012). Upper extremity (UE) hemi-
paresis is the most common impairment, with the preva-
lence as high as 80% in the acute and 40% in the chronic
phase post-stroke (Lawrence et al., 2001). Patients often
report dissatisfaction with their UE recovery and long-
lasting, costly restrictions to participation in activities of
daily living (ADLs) and quality of life (Lai et al., 2002).
More effective, individualized, and targeted therapy inter-
ventions are vital to improve patient outcomes and ad-
dress the demand for rehabilitation (Bernhardt et al.,
2019; Lohse et al., 2014; Ovbiagele et al., 2013).
Robotic therapy for UE rehabilitation has shown

promising results, but the benefits do not extend to all
patients at all stages of their recovery (Lo et al., 2010;
Milot et al., 2014; Mazzoleni et al., 2013; Hsieh et al.,
2018). Several studies have attempted to augment the
benefits of robotic therapy by combining interventions
(Bolognini et al., 2011; Edwards et al., 2019). Edwards
et al., 2019 investigated the effectiveness of combining
intensive robotic therapy for the UE with anodal trans-
cranial direct current stimulation (tDCS, RobottDCS)
compared to sham-tDCS (RobotSham) in a chronic stroke
population. Results showed 36 therapy sessions pro-
duced significant and clinically meaningful improve-
ments in motor recovery (as measured by the Fugl-
Meyer Assessment of Upper Extremity Motor Recovery
after Stroke (FMA-UE)) of both the RobottDCS and
RobotSham groups. However, the application of anodal
tDCS did not confer further advantage as measured by
clinical outcome measures (Edwards et al., 2019).
Combined therapy studies using tDCS have reported

variability in effectiveness, even when adopting similar
methodology (Edwards et al., 2019; Giacobbe et al.,
2013; Lefebvre & Liew, 2017; Straudi et al., 2016). One
reason for the lack of reproducibility could be the sub-
jectivity and insensitivity of clinical outcome measures
(Krebs et al., 2002; Bosecker et al., 2010; Semrau et al.,
2013). Literature in this field has advocated using kine-
matics to study motor recovery post-stroke (Bernhardt
et al., 2019; Semrau et al., 2013; Dipietro et al., 2012;
Dukelow, 2017; Scott & Dukelow, 2011; Dukelow et al.,
2012; Colombo et al., 2005; Reinkensmeyer et al., 2004).
Studies to date suggest kinematics (collected during a
robotic evaluation) can provide a standardized and ob-
jective measure of a patient’s motor control, correlating

with well-known clinical measures(Bosecker et al., 2010;
Semrau et al., 2013; Dipietro et al., 2012; Dukelow, 2017;
Krebs et al., 2014; Agrafiotis et al., 2021), and have the
potential to enhance research knowledge of treatment
effects, clinical reasoning, and our understanding of
stroke recovery (Bernhardt et al., 2019). Robotic evalua-
tions allow numerous metrics to be generated from a
single task and evaluation of both trained movements
(to assess improvements within and between therapy
sessions) as well as untrained movements (to assess
generalization of training.) Robotic derived smoothness
metrics, in particular, show good potential for quantify-
ing motor recovery in patients post-stroke (Rohrer et al.,
2002). There is no consensus on the best single ap-
proach to quantify smoothness, but most studies have
built on the work by Flash and Hogan (1985), who de-
fine smoothness as a measure of jerk (Dipietro et al.,
2012; Rohrer et al., 2002; Flash & Hogan, 1985). Subse-
quent studies explain changes in smoothness as a grad-
ual blending of discrete submovements (Rohrer et al.,
2002; Krebs et al., 1999), concluding that an accurate
overview of changes in smoothness requires a concur-
rent analysis of submovement blending characteristics
(Krebs et al., 1999). These kinematic micro-metrics are
calculated in this study to provide a detailed and object-
ive quantification of motor performance that may aug-
ment the findings of clinical outcome measures and our
understanding of motor recovery.
Edwards and colleagues included, but did not report the

results of, robotic evaluations which generated kinematic
and kinetic data (Edwards et al., 2019). Here we explore if
there was a difference in kinematic or kinetic measures of
motor control between patients receiving RobottDCS and
RobotSham. A sub-analysis of kinematic and kinetic data
investigates if the severity of motor impairment was a fac-
tor in the effectiveness of tDCS application, to determine
if intervention outcomes can be optimized by targeting a
sub-group of patients. Lastly we examine trends in the
kinematic and kinetic data of the shoulder-elbow (by per-
forming a combined group analysis) and the novel kine-
matic data of the wrist to investigate treatment effects of
tDCS and robotics and further our understanding of UE
motor recovery in the chronic post-stroke population.

Methods
Study overview
Subjects were enrolled from two sites, Burke Neuro-
logical Institute and Feinstein Institute for Medical
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Research, to participate in a double-blind, sham-
controlled, repeated measures study. Candidates were
eligible if they presented with a single ischemic stroke (>
six months) and right hemiparesis. The robotic interven-
tion involved 1024 movement repetitions per session, al-
ternating shoulder-elbow (MIT-MANUS planar robot)
and wrist-forearm robot therapy (MIT-WRIST, wrist
robot) on separate days, performed three times a week
(for a total of 36 sessions). Both the RobottDCS (anodal
tDCS, 2 mA, affected hemisphere, M1/SO montage) and
RobotSham interventions were administered at rest for
20 min immediately prior to each robotic session (Gia-
cobbe et al., 2013). Baseline clinical and robotic evalua-
tions were performed twice within 6 weeks prior to
commencing the intervention (separated by at least one
week to ensure a stable baseline), at completion of the
12-week intervention, and after six months post training.
Details on the study design are presented in Edwards
et al., 2019.

Sample size calculation
This study’s sample size was based on the primary clin-
ical outcome measure (FMA-UE) and not on kinematic
or kinetic metrics (Edwards et al., 2019). According to
(Lo et al., 2010) 12-weeks of UE robotic training was ex-
pected to result in a 2.88 point FMA-UE change in the
chronic stage of rehabilitation. For a combined tDCS
and robotic intervention, a FMA-UE change of 4.33
points was estimated. Using a two-sided alpha and a
standard deviation of approximately 1.5, enrolling 56
subjects (28 per group) would result in 90% power to de-
tect a difference of 1.45 in the FMA-UE between the
intervention groups. An enrollment goal of 66 subjects
(33 per group) was selected to allow for a 15% subject
attrition rate.

Kinematic and kinetic measures of the UE
Twenty kinematic macro and micro-metrics were de-
rived from four shoulder-elbow and 19 macro and
micro-metrics from three wrist evaluation tasks. Add-
itional file 1 describes the evaluation tasks and the
macro and micro-metrics generated for each evaluation,
and Additional file 2 outlines the submovement (micro)
metric definitions. Additional details about the shoulder-
elbow robotic evaluations have been published previ-
ously (Bosecker et al., 2010; Krebs et al., 1999).

Data analysis
Analysis of kinematic and kinetic data
A data analysis framework was developed (Moretti et al.,
2020) to pre-process data sets generated by the robotic
evaluations. This tool used formerly developed and
tested calculations (Bosecker et al., 2010; Dipietro et al.,

2007) to automatically process the robotic kinematic and
kinetic measures of all study subjects.
The statistical analysis was designed to test the super-

iority of RobottDCS compared to RobotSham. Statistical
significance between RobottDCS and RobotSham was de-
termined for each robotic measure (both macro and
micro-metrics) by first conducting a Jarque-Bera test
(α = 5%) to choose between a parametric or non-
parametric test. As samples did not follow a normal dis-
tribution, the Wilcoxon-Mann-Whitney (one-tailed) test
was used. A Bonferroni adjustment for repeated data
measures (at admission, discharge, and follow-up) was
performed, setting the significance level at P < .0167 for
an α = .05 and three evaluations per subject.
For the overall combined analysis of both patient

groups (RobottDCS and RobotSham) from admission to
discharge, we used the Wilcoxon signed rank (one-
tailed) test. As before the results were deemed significant
if p values were < .0167.
All statistical analyses were performed using MATLAB

(Natick, MA, The Mathworks, Inc., vR2019b.)

Post-hoc exploratory analysis
The severity of patient’s UE impairment was defined by
his/her baseline FMA-UE result. A brute force (exhaust-
ive) search was conducted to establish the range of
FMA-UE scores in which tDCS had a significant effect
on the greatest number of robotic measures.
The brute force search first analyzed the largest win-

dow of FMA-UE scores (1 to 66, all study participants),
identified RobottDCS from RobotSham subjects, and then
applied the Wilcoxon-Mann-Whitney test for each ro-
botic measure. Next the FMA-UE score window was re-
duced, from 1 to 65 then 2 to 66, and so on. The
process of narrowing the window and offsetting the scale
was carried out for every case, generating lists of p-
values for each combination. The subgroup with signifi-
cant p-values in the lowest quartile demonstrated the
largest difference between RobottDCS and RobotSham
outcomes.

Missing data
Of the 82 subjects enrolled (Table 1), 76 were available
for the discharge evaluation (an attrition rate of 7.32%,
see Fig. 1). One subject in the RobotSham and two in the
RobottDCS group experienced an unrelated illness, two
subjects had corrupted robot data, and one subject was
excluded when s/he underwent Botulinum Toxin A
therapy. 72 subjects were included in the follow-up ana-
lysis due to unrelated illness of one subject, death/illness
of a spouse, and transportation issues.
Of note, there is a small discrepancy between the

number of subjects included in the analysis reported in
Edwards et al., 2019 and the number of subjects
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Table 1 Participant characteristics and clinical admission results of RobottDCS, RobotSham, and the combined groups (overall)

Characteristic RobottDCS RobotSham Overall

Participants (n [%]) 41 [50.0%] 41 [50.0%] 82 [100.0%]

Age (mean years, [range]) 66.4 [42–87] 69.2 [42–90] 67.8 [42–90]

Days from stroke to start of trial (mean days [range]) 1475.2 [226–6935] 1160.0 [151–6936] 1317.6 [151–6936]

Gender (n Female [%]) 16 [39.0%] 16 [39.0%] 32 [39.0%]

Stroke location (n cortical [%]) 26 [63.4%] 27 [65.9%] 53 [64.6%]

FMA-UE (mean [range]) 25.6 [7–57] 25.4 [7–55] 25.5 [7–57]

WMFT (mean [range]) 60.0 [1–169] 56.0 [0–167] 58.0 [0–169]

BI (mean [range]) 88.4 [10–100] 85.0 [15–100] 86.7 [10–100]

MRC (mean [range]) 46.8 [8–79.5] 44.1 [15–85] 45.5 [8–85]

Note: tDCS transcranial direct current stimulation, FMA-UE Fugl-Meyer Assessment of Upper Extremity Motor Recovery after Stroke, WMFT Wolf Motor Function
Test, BI Barthel Index, MRC Medical Research Council Motor Power score

Fig. 1 CONSORT flow diagram
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analyzed in the robotic metric analysis due to different
evaluation methods being conducted during different
sessions, by different assessors.

Results
Analysis of kinematic and kinetic data: effectiveness of
tDCS
Completed robotic evaluation results were available for
76/82 enrolled subjects at discharge and 72 at six-month
follow-up (Fig. 1). There was no noteworthy difference
in any metric between the RobottDCS and RobotSham
groups at admission, discharge, or follow-up for the
shoulder-elbow or wrist data of all patients. Tables 2
and 3 show the between group analysis at the 3 evalu-
ation time-points for the shoulder-elbow and wrist met-
rics found to be significant in the combined analysis
(explained below and in Tables 4 and 5).

Analysis of kinematic and kinetic data: effectiveness of
combined robotic and tDCS therapy
There were significant improvements in the kinematic
and kinetic measures of motor control for the combined
RobottDCS and RobotSham study population from admis-
sion to discharge (Tables 4 and 5, Figs. 2 and 3).
For the shoulder-elbow, 12/20 kinematic and kinetic

metrics significantly improved and 2/20 were near sig-
nificant (Table 4). For the unconstrained trained reach-
ing task, these included: deviation, mean speed (trend
only), speed shape, jerk normalized for terminated
discrete movements (jerk), and submovement number
(trend only), duration, and overlap (see Table 4, Add-
itional file 1 and Additional file 2). Similarly, all metrics
of the unconstrained untrained circle drawing task and
both measures of the shoulder-elbow isometric
stabilization task (scatter and offset) demonstrated a sig-
nificant change. Both metrics of the reaching against

Table 2 Comparison of RobottDCS and RobotSham kinematic and kinetic metrics at admission, discharge, and follow-up for the
shoulder-elbow
SHOULDER-ELBOW

Admission Discharge Follow-up

Robotic Task Metric RobottDCS
mean (SD)

RobotSham
mean (SD)

Group
Comparison
(P value)

RobottDCS
mean (SD)

RobotSham
mean (SD)

Group
Comparison
(P value)

RobottDCS
mean (SD)

RobotSham
mean (SD)

Group
Comparison
(P value)

Unconstrained trained
reaching (macro-
metrics)

Deviation (m) .030 (.032) .030 (.028) .511 .024 (.031) .021 (.023) .519 .027 (.033) .022 (.023) .437

Mean Speed
(m/s)

.084 (.050) .081 (.034) .540 .094 (.047) .091 (.032) .464 .103 (.086) .093 (.031) .372

Speed shape .487 (.067) .500 (.079) .218 .526 (.077) .531 (.069) .401 .526 (.076) .532 (.064) .322

Jerk (m/s3) 112.927
(300.934)

76.191
(203.966)

.824 58.847
(156.297)

33.952
(22.507)

.639 85.173
(250.909)

35.645
(36.063)

.415

Unconstrained trained
reaching (micro-
metrics)

Sub-
movement
number

8.148
(3.774)

7.267
(3.850)

.080 6.995
(3.535)

6.811
(3.584)

.391 6.634
(2.819)

6.390
(2.831)

.298

Sub-
movement
duration (s)

.556 (.170) .0554 (.131) .607 .589 (.138) .622 (.114) .143 .597 (.127) .610 (.128) .322

Sub-
movement
overlap (s)

.266 (.080) .261 (.066) .763 .283 (.067) .293 (.051) .414 .289 (.057) .294 (.060) .326

Unconstrained
untrained circle
drawing

Circle ratio .662 (.247) .667 (.231) .578 .738 (.241) .767 (.190) .410 .698 (.232) .751 (.181) .166

Joint
independence

.634 (.220) .598 (.196) .264 .551 (.198) .494 (.151) .168 .572 (.206) .520 (.179) .175

Minor axis (m) .105 (.050) .103 (.044) .611 .118 (.045) .122 (.038) .414 .110 (.046) .117 (.038) .212

Reaching against
resistance

Maximum
displacement
(m)

.109 (.033) .102 (.037) .733 .114 (.032) .113 (.030) .647 .111 (.030) .113 (.029) .567

Overall aim
(radians)

.292 (.311) .310 (.304) .603 .244 (.313) .213 (.274) .230 .249 (.286) .199 (.199) .314

Maximum
displacement
(m)

.109 (.033) .102 (.037) .733 .114 (.032) .113 (.030) .647 .111 (.030) .113 (.029) .567

Isometric stabilization Scatter (m) .023 (.010) .021 (.010) .190 .021 (.011) .018 (.011) .116 .020 (.011) .018 (.011) .178

Offset (m) .038 (.020) .032 (.017) .110 .034 (.020) .028 (.015) .171 .032 (.018) .029 (.017) .215

Shoulder-elbow
kinetic evaluation

Shoulder
strength (N)

33.353
(24.787)

34.182
(20.111)

.233 38.925
(27.531)

38.979
(23.207)

.326 37.613
(23.337)

38.325
(23.954)

.482

Note: * indicates significance at p < 0.0167
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Table 3 Comparison of RobottDCS and RobotSham kinematic and kinetic metrics at admission, discharge, and follow-up for the wrist

WRIST

Admission Discharge Follow-up

Robotic Task Metric RobottDCS
mean (SD)

RobotSham
mean
(SD)

Group
Comparison
(P value)

RobottDCS
mean
(SD)

RobotSham
mean
(SD)

Group
Comparison
(P value)

RobottDCS
mean
(SD)

RobotSham
mean (SD)

Group
Comparison
(P value)

Unconstrained
trained
pointing
(macro-
metrics)

Deviation
(radians)

.165 (.121) .147 (.136) .312 .145 (.124) .134 (.135) .292 .148 (.112) .134 (.132) .328

Speed shape .290 (.060) .305 (.061) .240 .332 (.069) .349 (.067) .237 .343 (.070) .339 (.064) .731

Unconstrained
trained
pointing
(micro-metrics)

Sub-
movement
number

9.308
(7.216)

8.103
(6.908)

.083 6.931
(3.547)

8.076
(5.350)

.744 7.891
(5.566)

7.479
(4.741)

.548

Sub-
movement
overlap (s)

.175 (.138) .182 (.126) .346 .206 (.152) .178 (.084) .648 .217 (.179) .179 (.112) .735

Sub-
movement
interpeak
interval (s)

.251 (.151) .260 (.189) .333 .260 (.172) .231 (.115) .280 .266 (.189) .225 (.118) .269

Pointing
against
resistance

Maximum
displacement
(radians)

.176 (.083) .179 (.081) .525 .190 (.083) .204 (.088) .379 .176 (.077) .197 (.072) .072

Isometric
stabilization

Offset
(radians)

.152 (.090) .129 (.234) .269 .124 (.087) .152 (.147) .597 .138 (.097) .106 (.221) .447

Note: * indicates significance at p < 0.0167

Table 4 Significant changes from admission to discharge for the combined analysis of shoulder-elbow kinematic and kinetic data *

SHOULDER-ELBOW

Robotic Task Metric Admission to Discharge
(raw result [95% CI])

P value

Unconstrained trained reaching macro-metrics Deviation (m) .007 [.004 to .010] < ·001*

Mean Speed (m/s) .009 [.0002 to 0.019] ·03

Speed shape .035 [.022 to .048] ·001*

Jerk (m/s3) 45.907 [6.811 to 99.157] ·006*

Unconstrained trained reaching micro-metrics Submovement number .804 [.033 to 1.595] ·02

Submovement duration (s) .050 [.024 to .078] < ·001*

Submovement overlap (s) .024 [.010 to .040] < ·001*

Unconstrained untrained circle drawing Circle ratio .085 [.056 to .114] < ·001*

Joint independence .091 [.063 to .122] < ·001*

Minor axis (m) .015 [.010 to .020] < ·001*

Reaching against resistance Maximum displacement (m) .008 [.004 to .012] < ·001*

Overall aim (radians) .068 [.026 to .110] < ·001*

Isometric stabilization Scatter (m) .002 [−.00006 to .004] < ·001*

Offset (m) .004 [.002 to .007] < ·001*

S/E kinetic evaluation Shoulder strength (N) 5.075 [2.080 to 8.092] ·001*

Note: S/E shoulder-elbow, * indicates significance at p < 0.0167
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resistance task (maximum displacement and overall aim)
showed significant gains. The mean change in shoulder
peak force (deltaz) improved significantly from admis-
sion to discharge.
For the unconstrained trained wrist pointing task, de-

viation and speed shape improved considerably. Sub-
movement number trended down, overlap increased,
and interpeak interval decreased, but there was no im-
provement in the measure of wrist jerk (− 21.456, −
46.063 to − 1.117; P = 0·89). Maximum displacement and
offset improved for the wrist pointing against resistance
and isometric stabilization task, respectively. All other
metrics did not demonstrate a significant change (see
Table 5 and Figs. 2 and 3.)

Post-hoc analysis: stroke severity
For the shoulder-elbow, only patients with severe motor
impairments (FMA-UE 7–9/66, n = 18) demonstrated a
significant difference in kinematic metrics of motor con-
trol between groups, showing greater improvement for
patients receiving RobotSham (n = 10) compared to
RobottDCS (n = 8). Additional file 3 outlines the seven
metrics that improved in the severe RobotSham sub-
group (achieved significance or strong trend).
Similarly for the wrist, only patients with severe motor

impairments (FMA-UE 8–12/66, n = 16) in the Robot-
Sham group (n = 8) showed a significant difference in
kinematic metrics (Additional file 3) from admission to
follow-up. Remaining patient subgroups did not differ.

Discussion
The comparison of RobottDCS and RobotSham outcomes
using kinematic and kinetic metrics confirms the find-
ings of the previously reported clinical outcomes (Ed-
wards et al., 2019). Although significant motor gains
were demonstrated between admission and discharge
and admission and follow-up in both groups, the tDCS
intervention was not shown to provide additional benefit
at any time-point to the motor recovery of the UE than
robotic therapy alone in the chronic stroke population.

This result is consistent with existing studies investi-
gating combined robotic and tDCS therapy (Giacobbe
et al., 2013; Straudi et al., 2016). Giacobbe et al., 2013
suggest tDCS may not have an additive or augmentation
effect to the already significant motor gains induced by
robotic therapy, but may instead change the nature of
the training effect. It is possible that robotic training in-
duces a ceiling effect whereby motor recovery is maxi-
mized, and any additional benefit from tDCS cannot be
identified (Straudi et al., 2016). Comparing our study to
other studies demonstrating either an additional positive
effect of tDCS (Bolognini et al., 2011) or a difference in
the kinematic measures of the tDCS group (Giacobbe
et al., 2013) reveals that factors such as sample size,
tDCS method, lesion site, motor task, stage of recovery,
and type of stroke may contribute to the variance seen
in patient outcomes (Lefebvre & Liew, 2017).
Combining the kinematic and kinetic results of the

RobottDCS and RobotSham groups allowed us to investi-
gate the value of these metrics as a measure of motor
control and explore the trends in the UE motor recovery
of the chronic stroke population. Edwards and col-
leagues reported a mean FMA-UE improvement of 7·36
points from baseline over the 12-week intervention (Ed-
wards et al., 2019). The kinematic and kinetic measures
showed a significant improvement from admission to
discharge (Tables 4 and 5). Our findings support previ-
ous literature that a robotic evaluation and the metrics it
generates are consistent with clinical measures and may
provide a reliable, standardized, and objective tool for
the quantification of motor recovery (Bosecker et al.,
2010; Semrau et al., 2013; Dipietro et al., 2012) that may
have the potential advantage of less interrater variability
and subjectivity (Krebs et al., 2002).
The shoulder-elbow kinematic results were consistent

with previous investigations, showing a progressive re-
covery in movement smoothness (speed shape, jerk, and
submovement metrics), (Dipietro et al., 2012; Rohrer
et al., 2004) shoulder strength, movement against resist-
ance, (Bosecker et al., 2010) isometric stabilization, and
coordination (circle tasks.) (Dipietro et al., 2007,

Table 5 Significant changes from admission to discharge for the combined analysis of wrist kinematic data

Wrist

Robotic Task Metric Admission to Discharge (raw result [95% CI]) P value

Unconstrained trained pointing macro-metrics Deviation (radians) .018 [.004 to .033] ·01*

Speed shape .043 [.029 to .059] < ·001*

Unconstrained trained pointing micro-metrics Submovement number .625 [−.873 to 2.175] .224

Submovement overlap (s) .013 [−.024 to .049] .074

Submovement interpeak interval (s) .012 [−.033 to .057] .411

Pointing against resistance Maximum displacement (radians) .018 [.00004 to .037] ·01*

Isometric stabilization Offset (radians) .002 [−.044 to .038] ·006*

Note: * indicates significance at p < 0.0167
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Fig. 2 Combined RobottDCS and RobotSham mean and standard error of kinematic and kinetic outcome metrics for the shoulder-elbow (S/E.)
Significant changes (P < .0167) between admission (ad), discharge (dc), and follow-up (fu.) are marked with an * Note: The bar-graphs in white
background represent the unconstrained trained reaching macro-metrics, the lightest grey shading background represents the unconstrained
trained reaching micro-metrics (sm= sub-movement), the slightly darker grey represents the unconstrained untrained circle metrics, and the
darkest grey represents the reaching against resistance, isometric stabilization, and kinetic metrics (respectively, see Additional file 1 for further
details on the metrics.)
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Dipietro et al., 2012) and (Rohrer et al., 2004) used the
same robotic evaluation to investigate the pattern of re-
covery of trained (unconstrained reaching) and un-
trained (circle drawing) movements in acute and chronic
patients post-stroke by analyzing changes in smoothness
and submovements. Both studies reported acute motor
recovery of inpatients to be characterized by reduced
movement duration, increased mean and peak speed,

but a concurrent worsening of jerk. The submovement
profile of the acute patients demonstrated fewer, larger
movements being blended together (submovement num-
ber reduced and duration, interpeak interval, and overlap
increased.) A similar pattern was evident for patients
with chronic stroke, but smaller magnitude of change
compared to acute; however, the jerk metric was seen to
improve in the outpatient population. Our results

Fig. 3 Combined RobottDCS and RobotSham mean and standard error of kinematic and kinetic outcome metrics for the wrist. Significant changes
(P < .0167) between admission (ad), discharge (dc), and follow-up (fu.) are marked with an * Note: The bar-graphs in white background represent
the unconstrained trained pointing macro-metrics, the lightest grey shading background represents the unconstrained trained pointing micro-
metrics (sm= sub-movement), and the darkest grey represents the reaching against resistance, isometric stabilization, and kinetic metrics
(respectively, see Additional file 1 for further details on the metrics.)
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replicate this pattern of chronic-stage stroke recovery,
therefore supporting the value of both macro- and
micro-kinematic measures to characterize motor recov-
ery of the shoulder-elbow. Taken together, these findings
support kinematic and kinetic metrics as sensitive and
valid tools for assessing recovery of the UE during both
the rapid and marked spontaneous recovery early after
stroke, as well as intervention-related improvement dur-
ing the stable recovery plateau.
Improvements in the circle drawing task indicate that

training point to point movements generalize motor
gains to circle drawing and coordination of shoulder-
elbow movements away from the body. Dipietro et al.,
2012; Dipietro et al., 2007 also reported an increase in
circle ratio and kinematic changes for the circle drawing
task. Consistent with our results, Dipietro et al., 2007 re-
ported improvements in the circle ratio predominately
due to changes in the minor axes, not the major axes, of
the circle drawing task. The minor axis corresponds pri-
marily to independent elbow extension and shoulder ab-
duction movements, suggesting that patients improve
their ability to move out of the UE flexor synergy (elbow
flexion and shoulder abduction) and gain greater joint
independence (see Fig. 4 – to afford direct comparison
with Dipietro we used the same significance level.) Circle
drawing was not trained in this study or in Dipietro
et al., 2012; Dipietro et al., 2007 and gains were sus-
tained (six months after training,) indicating
generalizability of training outcomes. This supports the
use of motor learning as a better model, not adaptation
(usually characterized by short-term changes), for motor
recovery of the UE (Dipietro et al., 2012).
Wrist kinematic results generated from the combined

analysis of all participants revealed a novel insight in
motor recovery. In our chronic patient population, one
measure of smoothness (speed shape) improved signifi-
cantly but the jerk metric did not. A superficial interpret-
ation suggests the intervention did not impact wrist
smoothness. Nonetheless, wrist micro-metrics and sub-
movement characteristics provide clarification on the na-
ture of the smoothness changes. The number of
submovements decreased, overlap increased, and there
was a trend for reduced interpeak interval. These results
indicate that submovements grew closer together in the
chronic stage of recovery. Interestingly, this pattern of
motor recovery replicates the shoulder-elbow submove-
ment characteristics of the sub-acute inpatient population
reported in Rohrer et al., 2004 and Dipietro et al., 2012.
Although the chronic population within the same studies
shared many trends in submovement characteristics,
changes to interpeak interval appeared to be exclusive to
the acute population for the shoulder-elbow. It is possible
that both the proximal and distal segments of the UE
share the same characteristics of recovery (as shown by a

submovement analysis), but the time-course of the wrist
recovery profile is relatively delayed compared to the
shoulder-elbow. This conjecture may begin to explain
findings in the literature such as the superior recovery of
the wrist compared to the shoulder-elbow in chronic pa-
tients post-stroke. Hsieh et al., 2018 compared the effect-
iveness of distal versus proximal robotic therapy in
patients six months or more after stroke onset. Results re-
vealed participants receiving wrist robotic therapy had
greater improvements in muscle strength and quality of
movement in ADLs than patients receiving shoulder-
elbow therapy (Hsieh et al., 2018). Although further stud-
ies are required to investigate this conjecture, our wrist
submovement analysis suggests there may be potential for
patients with distal impairment to continue to improve
well into the chronic stage of their recovery. Our results
attest to the importance and value of kinematic measures
and a submovement analysis to enrich our understanding
of UE motor recovery post-stroke.
This study is the first to our knowledge to investigate

the impact of UE impairment severity on the effectiveness
of tDCS. Most studies implementing tDCS recruit patients
with a large range of impairment, (Bolognini et al., 2011;
Giacobbe et al., 2013) despite neural recovery depending
on the severity of stroke (Coupar et al., 2012; Kim & Win-
stein, 2017). Our results revealed the only patient sub-
group with a significant difference in kinematic measures
of motor control between RobottDCS and RobotSham had
very severe motor impairment in favor of the RobotSham
group. This result is interesting for two reasons.
Firstly, most studies investigating stroke prognosis

have concluded that patients with less burden of dis-
ease (measured by the functional integrity of the cor-
ticospinal tract or the structural integrity of
descending white matter pathways) have better func-
tional outcomes (Coupar et al., 2012; Kim & Win-
stein, 2017). Nonetheless. other studies have also
reported more significant improvements in the
chronic patient population or those with lower levels
of cortical activity and greater UE impairment. Straudi
et al., 2016 showed significant and positive therapy out-
comes for a combined tDCS and robotics intervention
that was dependent on stage of recovery (patients with
chronic stroke improved more than the acute group) and
lesion location (subcortical was superior to cortical). Milot
et al., 2014 investigated predictors of functional gain for
patients receiving robotic therapy and found that
lower baseline motor evoked potential (MEP) activa-
tion correlated with better functional outcomes of the
affected UE. The explanation offered for these find-
ings was: the lower baseline cortical activity may rep-
resent underused cortical potential, therefore patients
with higher cortical activation and baseline measures
of motor control may have less reserve to augment
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either cortical activity or behavioral changes with
therapy (Milot et al., 2014; Straudi et al., 2016).
Secondly, the RobotSham group were shown to have

better kinematic outcomes than RobottDCS in the se-
vere subgroup of patients. Edwards also reported sig-
nificant clinical findings of improved FMA-UE
response rate (MCID) greater in the RobotSham
group (Edwards et al., 2019). The mechanisms for

this result are unknown, although we speculate that
increases in abnormal tone could have been a factor.
Data on tone was not collected in this study to in-
form this theory, but we believe this warrants further
investigation. As a difference between groups was
only observed in patients with very severe UE im-
pairments, this speaks to the diversity of interactions
of tDCS between different deficits, cortical activity

Fig. 4 Improvements in joint independence over time. To afford direct comparison with Figs. 4 and 5 of (Dipietro et al., 2007), here we employed
the same non-corrected significance at P < .05 level. Individual values of joint independence metric (a and b for all patients), sorted by their
performance at admission (squares) in comparison to discharge (diamonds), and follow-up (circles). A lower number indicates greater/improving
joint independence. Figures c and d represent changes in the joint independence metric, where filled circles indicate significance at discharge (c)
and follow-up (d)
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levels, and individual patients (Krause & Kadosh,
2014).

Conclusions
Significant improvements in motor control were de-
tected with kinematic and kinetic measures for a com-
bined UE robot and tDCS intervention in chronic
stroke. However, no difference was found between the
RobotSham and RobottDCS groups. This confirmed the re-
sults of previous clinical measures (Edwards et al., 2019).
Submovement characteristics provided insight into im-
provements in smoothness and highlighted the import-
ance of kinematic micrometrics for enhancing our
understanding of motor recovery post-stroke. Novel
wrist kinematic data suggested an interesting pattern of
delayed wrist motor recovery in the chronic stage com-
pared to the timeline of the shoulder-elbow. Our sub-
group analysis revealed that patients with very severe
motor impairment in the RobotSham group benefited the
most from the intervention. Our study demonstrated
limited benefit for adding anodal tDCS prior to robotic
training in chronic stroke and future studies are needed
to investigate the interaction of intensive motor training
with other forms of neuro-stimulation and patient
populations.
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