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Robotic Kinematic measures of the arm in
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Abstract

Background: A detailed sensorimotor evaluation is essential in planning effective, individualized therapy post-
stroke. Robotic kinematic assay may offer better accuracy and resolution to understand stroke recovery. Here we
investigate the added value of distal wrist measurement to a proximal robotic kinematic assay to improve its
correlation with clinical upper extremity measures in chronic stroke. Secondly, we compare linear and nonlinear
regression models.

Methods: Data was sourced from a multicenter randomized controlled trial conducted from 2012 to 2016,
investigating the combined effect of robotic therapy and transcranial direct current stimulation (tDCS). 24 kinematic
metrics were derived from 4 shoulder-elbow tasks and 35 metrics from 3 wrist and forearm evaluation tasks. A
correlation-based feature selection was performed, keeping only features substantially correlated with the target
attribute (R > 0.5.) Nonlinear models took the form of a multilayer perceptron neural network: one hidden layer and
one linear output.

Results: Shoulder-elbow metrics showed a significant correlation with the Fugl Meyer Assessment (upper extremity,
FMA-UE), with a R = 0.82 (P < 0.001) for the linear model and R = 0.88 (P < 0.001) for the nonlinear model. Similarly,
a high correlation was found for wrist kinematics and the FMA-UE (R = 0.91 (P < 0.001) and R = 0.92 (P < 0.001) for
the linear and nonlinear model respectively). The combined analysis produced a correlation of R = 0.91 (P < 0.001)
for the linear model and R = 0.91 (P < 0.001) for the nonlinear model.

Conclusions: Distal wrist kinematics were highly correlated to clinical outcomes, warranting future investigation to
explore our nonlinear wrist model with acute or subacute stroke populations.

Trial registration: http://www.clinicaltrials.gov. Actual study start date September 2012. First registered on 15
November 2012. Retrospectively registered. Unique identifiers: NCT01726673 and NCT03562663.
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Background
Despite significant medical advances in acute manage-
ment over the last 20 years, stroke continues to be a
leading cause of chronic disability and health-related
costs in the United States (Lopez et al., 2006) and across
the globe (Jauch et al., 2013). Following the substantial
progress in stroke-survival rates, there are now more
people living with chronic stroke-related disability,
impacting the health burden (Murray et al., 2013). Lim-
ited functional recovery of the upper extremity (UE) is
often reported following stroke and is the cause of sig-
nificant long-term restriction to activities of daily living
(ADLs) and community reintegration (Lawrence et al.,
2001). More standardized and targeted measures of UE
function are key to prescribing more effective and indi-
vidualized therapy, with the aim of improving patient
outcomes and reducing length of stay, the costs, and the
demand for rehabilitation following stroke (Bernhardt
et al., 2019; Harcum et al., 2019).
A detailed evaluation of sensorimotor impairment and

function is essential in planning appropriate, effective,
and individualized therapy interventions (Harcum et al.,
2019; Rech et al., 2020). Clinical outcome measures,
such as the widely used Fugl-Meyer Assessment of
Upper Extremity Motor Recovery after Stroke (FMA-
UE), offer a convenient and low cost method of assess-
ment. These measures have been used as the gold stand-
ard for evaluation of rehabilitation outcomes across the
continuum of care and in clinical research. Nonetheless,
many clinical scales are limited by subjectivity and in-
sensitivity to detect changes in motor control, particu-
larly for patients with severe motor impairment (Krebs
et al., 2002; Bosecker et al., 2010; Semrau et al., 2013;
See et al., 2013). Even for highly recommended clinical
measures with good psychometric properties, such as
the FMA-UE, previous studies have highlighted that
without adequate training and standardization of assess-
ment procedures, the variability in inter-rater scores can
be equivalent to the scale’s minimally clinically import-
ant difference (See et al., 2013; Krebs et al., 2014). It is
not well understood that the FMA-UE is a nonlinear
scale, meaning gains on the items at the beginning of
the measure are not equivalent, and have a different
meaning, to items at the end of the measure. There are
also varied reports and uncertainty regarding the extent
that the FMA-UE scale can stratify patients at different
stages of recovery and the impact of ceiling and floor ef-
fects (See et al., 2013; Gladstone et al., 2002; Cramer,
2010). With rapid advances and improved accessibility
of rehabilitation technology in the developed world, the
reliability of clinical measures is now being questioned
given that other measurement tools are more available.
Robotic derived kinematic evaluations may be one

solution to better understand stroke recovery and

optimize patient’s rehabilitation journey. The ability to
objectively evaluate movement quality is key for distin-
guishing between behavioral restoration and compensa-
tion post-stroke. (Kwakkel et al., 2019) Previous studies
in this field suggest that kinematic data can provide a
standardized and objective measure of a patient’s motor
control and movement quality, which correlates with
well-known clinical measures, (Bosecker et al., 2010;
Semrau et al., 2013; Krebs et al., 2014; Colombo et al.,
2005; Dipietro et al., 2012; Dukelow, 2017; Agrafiotis
et al., 2021) and has the potential to enhance know-
ledge of treatment effects, clinical reasoning, and our
understanding of stroke recovery (Bernhardt et al.,
2019; Kwakkel et al., 2019). The existing literature on
correlating robotic kinematic data with clinical mea-
sures has been limited by small sample sizes, (Zollo
et al., 2011; Murphy et al., 2011; Krabben et al., 2012)
enrolling patients with a narrow spectrum of UE im-
pairment, (Zollo et al., 2011; Murphy et al., 2011) only
including data on the proximal UE, (Bosecker et al.,
2010) or investigating a single modelling technique,
(Bosecker et al., 2010; Krebs et al., 2014; Agrafiotis
et al., 2021) potentially impacting the perceived value
and strength of the correlation between robotic kine-
matic evaluations and clinical scales.
This study aims to contribute to this field in two ways.

First by investigating the value of kinematic wrist data
(in addition to the previously studied shoulder-elbow
metrics) to improve the correlation between standard-
ized robotic measures and common clinical measures of
the UE. Secondly, we will build on previous work
(Bosecker et al., 2010; Krebs et al., 2014; Agrafiotis et al.,
2021) by investigating both linear and nonlinear regres-
sion models for estimating clinical measures from robot
metrics in the chronic post-stroke population.

Methods
Study overview
This study was derived from a randomized controlled
trial conducted from 2012 to 2016 investigating the
combined effect of intensive robotic therapy and trans-
cranial direct current stimulation (tDCS). Subjects were
enrolled from 2 sites, Burke Neurological Institute and
Feinstein Institute for Medical Research, to participate
in a double-blind, sham-controlled, repeated measures
study. Candidates were eligible if they presented with
chronic stroke (> 6-months when commencing the inter-
vention) and right hemiparesis. The robotic intervention
involved 1024 movement repetitions per session, alter-
nating shoulder-elbow (MIT-MANUS, planar robot) and
wrist-forearm robot therapy (MIT-WRIST, a 3 degree of
freedom wrist robot) on separate days, performed 3
times a week (for a total of 36 sessions) (Krebs et al.,
2007; Krebs et al., 1998). Both the RobottDCS (anodal-
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tDCS, 2 mA, affected hemisphere, M1/SO montage) and
RobotSham interventions were administered at rest for
20 min immediately prior to each robotic therapy session
(Giacobbe et al., 2013). Baseline clinical and robotic eval-
uations were performed twice within 6-weeks prior to
commencing the intervention (to ensure a stable base-
line impairment), again at completion of the 12 week
intervention, and after 6-months post training.
Additional details of the study design are presented in
Edwards et al. (2019).

Clinical outcome measures for the UE
The primary clinical measure employed was the FMA-
UE. The FMA-UE uses an ordinal performance-based
scale to score the level of UE motor impairment after
stroke. The scale comprises 33 items designed to exam-
ine reflex activity, motor control, and muscle strength
(with a maximum score of 66). The measure is both
highly recommended by stroke guidelines and widely
used for clinical and research settings in chronic stroke
(Shirley Ryan AbilityLab, 2016a).
Secondary outcome measures included the Wolf

Motor Function Test (WMFT), Barthel Index (BI), and
the Medical Research Council Motor Power score
(MRC). The WMFT is a 21 item measure of UE motor
ability comprising time, functional ability, and strength
tasks. The maximum score is 75 with lower scores indi-
cating lower functional ability. The WMFT is recom-
mended for the assessment of stroke across the
continuum of care (Shirley Ryan AbilityLab, 2016b). The
BI is a performance measure of functional independence
including mobility, gait, and performance of ADLs. 10
items are rated according to the amount of assistance re-
quired to successfully complete the task, with a max-
imum score of 100 (Shirley Ryan AbilityLab, 2016c). The
MRC score is a grading system for manual muscle test-
ing used widely in neurological and musculoskeletal clin-
ical and research settings. The power of each muscle is
evaluated in relation to the maximum expected for that
single joint and scored from 0 to 5 (Shirley Ryan Ability-
Lab, 2020; Medical Research Council, 2020).

Kinematic and kinetic measures of the UE
Twenty-four kinematic macro and micrometrics were
derived from 4 shoulder-elbow evaluation tasks and 35
metrics from 3 wrist and forearm evaluation tasks. De-
tails of the robotic kinematic tasks and metrics have
been published elsewhere (Bosecker et al., 2010; Krebs
et al., 1999) and are described in Tables 1 and 2. Figure 3
shows a representative example of three participants
who were assessed at admission to have a low (severe
impairment), or moderate FMA-UE score and their cor-
responding robotic evaluation movement plots at admis-
sion and follow-up.

Statistical analyses
All statistical analyses were performed using MATLAB
(Natick, MA, The Mathworks, Inc. vR2019b) and results
were deemed significant if P values were < .05.

Dataset format and model generation
A data analysis framework was developed to preprocess
the robotic raw data (Moretti et al., 2020). This tool built
on formerly developed and tested calculations (Bosecker
et al., 2010; Dipietro et al., 2012) to automatically obtain
the robotic kinematic and kinetic-based metrics of all
study subjects.
The dataset format describes evaluation sessions

(admission, discharge and follow-up) for all patients,
where features (predictive attributes) are the mean-
aggregated kinematic and kinetic values, with the re-
spective clinical measures of a particular session set as
the target attributes.
Due to high dimensionality of the dataset, we per-

formed a correlation-based feature selection, keeping
only features substantially correlated with the target
attribute (R > .5, see Figs. 1 and 2) and representing
the different motor control features (e.g. metrics ex-
tracted from both trained and untrained move-
ments). In addition, for every group of features with
high dependency among themselves, the one with
better interpretability was preserved and the
remaining features were discarded to reduce
collinearity.
Similarly, correlations among the clinical measures

were calculated to determine dependent scales (Figs. 1
and 2). If there was a very strong correlation between
clinical measures, this suggested redundancy whereby it
may be possible to reduce the number of clinical mea-
sures performed and the time needed to conduct a clin-
ical evaluation.
The strength of the correlations calculated in the ana-

lyses (R) were interpreted as follows; R = .0–.3 very weak,
R = .31–.5 weak, R = .51–.7 moderate, and R = .71–1.0
strong (Moore et al., 2013).
Following strategies from previous work, we consid-

ered linear (Bosecker et al., 2010) and nonlinear (Krebs
et al., 2014; Agrafiotis et al., 2021) complexities as candi-
date models for the correlation of clinical scales across
the duration of the study (i.e. two baselines, 12-week,
and 6-months). Nonlinear models took the form of a
multilayer perceptron neural network: one hidden layer
with 2 sigmoid nodes and one linear output (Krebs
et al., 2014; Agrafiotis et al., 2021) Features were
rescaled by normalizing to their maximum values.
Clinical measures were rescaled for the nonlinear model
only.
Every candidate model was submitted to a 4-fold

cross-validation, with the resulting R value representing
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the average. Because one patient was associated with
more than one dataset instance (evaluation), we imple-
mented a variation of a traditional cross-validation with
patient-wise sampling instead of instance-wise. Instances
from 25% of patients (randomly selected, without re-
placement) were held as a test set, while the remaining
75% were used to build a model for training. This
process continued for each remaining 25–75% partition.
A Mann-Whitney test was carried out to ensure that in-
stances from training and test partitions were similarly
distributed with respect to their expected outputs.
The shoulder-elbow motor power (MP) analysis was

more complex and was performed in 3 ways to ex-
plore the correlation between the clinical MRC meas-
ure and the different kinematic and kinetic measures
of shoulder force. The first correlation (MP total,
Table 3) was calculated using kinetic metrics (derived

Table 1 Outline of robotic evaluation tasks and the metrics derived from the evaluations

Robotic Evaluation Description Metrics Derived

Unconstrained trained
reaching task (S/E robot)

Required the patient to attempt 80 active reaching motions to and
from 8 targets spaced equally around a 14 cm circle. The reaching
movements used for the evaluation were similar to the robot assisted
tasks completed during training.

Aim, duration, deviation, dwell time, mean speed, peak
speed, speed shape (ratio of mean to peak speed), and
jerk (normalized for terminated reaching movements
(discrete) and rhythmic movements.) Micrometric data
was derived by extracting support-bounded lognormal
submovements from movement speed profiles as de-
scribed in Rohrer et al. (Rohrer et al., 2002) This included
submovement number, duration, overlap, peak, and inter-
peak interval (see Table 2 for submovement definitions.)

Unconstrained
trained wrist pointing task

Required the patient to attempt 80 active wrist (F/E/RD/UD) motions
to and from 8 targets distributed around an ellipse with major axis of
60o (30o for F/E each) and minor axis of 30o (15o for RD/UD each).
The wrist pointing movements used for the evaluation were similar to
the robot assisted tasks completed during training.

Aim, duration, deviation, dwell time, mean speed, peak
speed, speed shape (ratio of mean to peak speed), and
jerk (normalized for terminated pointing movements
(discrete) and rhythmic movements.) Micrometric data
included submovement number, duration, overlap, peak,
and interpeak interval (see Table 2 for submovement
definitions.)

Unconstrained
trained forearm
movement

Required the patient to attempt 80 active forearm (PS) motions
between 2 targets distributed along a line (30o of P and S each).
(Krebs et al., 2007) The forearm movements used for the evaluation
were similar to the robot assisted tasks completed during training.

Aim, duration, deviation, dwell time, mean speed, peak
speed, speed shape (ratio of mean to peak speed), and
jerk (normalized for terminated pointing movements
(discrete) and rhythmic movements.) Micrometric data
included submovement number, duration, overlap, peak,
and interpeak interval (see Table 2 for submovement
definitions.)

Unconstrained
untrained circle drawing
task (S/E robot only)

Involved the patient completing 5 unassisted attempts to draw a
circle, in a clockwise and counterclockwise direction, from 2 different
starting positions (3 o’clock and 9 o’clock) for a total of 20 movement
repetitions. Note that training did not include attempts to draw
circles.

Major and minor axes of the best-fitting ellipse and the
ratio of the axes measurements for each of the 4 circle
drawing conditions as well as the orientation of the
major axes. Inverse kinematics allow us to estimate the
shoulder and elbow joint movements. Joint independ-
ence determines the correlation between the shoulder
and elbow movement.

Movement against
resistance task

Required the patient to move against an increasing force as they
reach toward the targets.

Measures of maximum displacement and overall aim.

Isometric stabilization task The patient attempted to hold their S/E or wrist still while the robot
exerted forces to move the patient’s arm/robot handle toward the
outer edge of the circle.

Movement scatter and offset.

Kinetic S/E evaluation The patient was positioned facing the robot (for shoulder F/E) or
rotated 90 degrees away from the robot (for shoulder AB/AD) in 90
degrees of shoulder flexion, with the elbow fully extended and the
forearm, wrist, and hand supported by the robot arm. The patient was
asked to attempt to lift their arm (for F and AB measurements) or
push down (for E and AD measurements) 5 times in each direction,
for a total of 20 trials.

Mean shoulder strength (deltaz)

Note: S/E = shoulder-elbow, F = flexion, E = extension, AB = abduction, AD = adduction, RD = radial deviation, UD = ulnar deviation, PS = forearm
pronation and supination

Table 2 Description of submovement metrics

Submovement
Metric

Definition

Number The number of submovements in an entire
movement

Duration (s) The time from initiation until the termination of an
individual submovement

Overlap (s) Interval between commencement of a
submovement and termination of the previous
submovement

Peak
(m/s (S/E)
rad/s (wrist))

Peak speed of each individual submovement

Interpeak interval
(s)

Interval between peaks of consecutive
submovements

Note: S/E = shoulder-elbow. Metric definitions were adapted from Rohrer et al.
(Rohrer et al., 2002)
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from a force transducer) and all possible kinematic
metrics (with a R > .5). The correlation analysis was
repeated (labelled MP kinematic force metrics) using
the kinetic metrics and only the force derived kine-
matic metrics (from the movement against resistance
and isometric stabilization tasks) and finally, using
only the kinetic metrics (MP force transducer metrics,
Table 3) to determine the value of the different
shoulder metrics (shoulder AB, AD, F, E, and mean
shoulder force) and the use of a force transducer.

Results
Subject demographics and baseline characteristics
Eighty-two participants were enrolled in the study in the
chronic stage following stroke with a wide range of UE

impairment. Table 4 summarizes the demographics of
study participants and the admission scores for the clin-
ical evaluations.

Correlation of robotic metrics and clinical scales
Correlation with FMA-UE
The 6 shoulder-elbow robotic metrics (features) with a R > .5
used for the correlation model with the FMA-UE included;
offset, mean shoulder force (deltaz), circle joint independ-
ence, maximum displacement, deviation, and shape speed.
Both the linear and nonlinear model fitted with these fea-
tures showed a significant correlation with the FMA-UE,
with a R = .82 (P < 0.001) for the linear model and R = .88
(P < 0.001) for the nonlinear model (see Table 3).

Fig. 1 Heatmap of S/E kinematic and kinetic data correlation with clinical scales
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Five wrist and forearm metrics were selected for the cor-
relation analysis; wrist deviation and mean speed, forearm
mean speed, wrist offset, and forearm offset. A high and
statistically significant correlation with the FMA-UE was
calculated, with a R = .91 (P < 0.001) for the linear model
and R = .92 (P < 0.001) for the nonlinear model.
The combined shoulder-elbow and wrist analysis

(using the 6 shoulder-elbow and 5 wrist and forearm
metrics) produced a correlation of R = .91 (P < 0.001) for
the linear model and R = .91 (P < 0.001) for the nonlin-
ear model.

Correlation with BI
Five shoulder-elbow metrics were found to have a R > .5;
deviation and submovement duration, overall aim,

horizontal axes, and offset. These shoulder-elbow fea-
tures had a correlation of R = .68 (P < 0.001) using the
linear model and R = .73 (P < 0.001) for the nonlinear
model.
The 4 strongest wrist metrics were used for the

BI correlation, although no metric was found to be
R > .5; wrist deviation and mean speed, wrist overall
aim, and forearm offset. The wrist correlations were
lower, with R = .53 (P < 0.005) for the linear model
and R = .58 (P < 0.005) for the nonlinear model.
Using the 9 shoulder-elbow, wrist, and forearm

metrics, the combined analysis showed a moderate
correlation of R = .67 (P < 0.001) for the linear
model and R = .70 (P < 0.001) for the nonlinear
model.

Fig. 2 Heatmap of wrist-forearm kinematic data correlation with clinical scales
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Correlation with WMFT
The same 6 shoulder-elbow and 5 wrist and forearm
metrics as the FMA-UE correlation were found to have
a R > .5 for the WMFT correlation analysis.
A strong correlation with the WMFT was found using

the shoulder-elbow features for both the linear and non-
linear model (R = .85 (P < 0.001) and R = .89 (P < 0.001)
respectively.)
The wrist also demonstrated a significant strong cor-

relation with the linear and nonlinear models, with a
R = .89 (P < 0.001) for the linear model and R = .90 (P <
0.001) for the nonlinear model.
The combined shoulder-elbow and wrist analysis re-

sulted in a R = .92 (P < 0.001) for the linear model and
R = .93 (P < 0.001) for the nonlinear model.

Correlation with MRC

MP Total Five shoulder-elbow kinematic metrics and
shoulder kinetic metrics were used in the shoulder-
elbow MP total correlation analysis; offset, mean

Table 3 Correlation of kinematic and kinetic metrics with
clinical measures

Measure Device Model R P

FMA-UE 0–66 S/E linear 0.82 **

non
linear

0.88 **

wrist linear 0.91 **

non
linear

0.92 **

both linear 0.91 **

non
linear

0.91 **

FMA-UE 1–38 S/E linear 0.80 **

non
linear

0.86 **

wrist linear 0.86 **

non
linear

0.87 **

both linear 0.89 **

non
linear

0.89 **

FMA-UE 39–66 S/E linear 0.74 **

non
linear

0.74 **

wrist linear 0.43

non
linear

0.69 *

both linear 0.69 *

non
linear

0.70 *

BI S/E linear 0.68 **

non
linear

0.73 **

wrist linear 0.53 *

non
linear

0.58 *

both linear 0.67 **

non
linear

0.70 **

WMFT S/E linear 0.85 **

non
linear

0.89 **

wrist linear 0.89 **

non
linear

0.90 **

both linear 0.92 **

non
linear

0.93 **

MP (Total) S/E linear 0.86 **

non
linear

0.87 **

wrist linear 0.88 **

Table 3 Correlation of kinematic and kinetic metrics with
clinical measures (Continued)

Measure Device Model R P

non
linear

0.90 **

both linear 0.91 **

non
linear

0.92 **

MP Kinematic Force
Metrics

S/E linear 0.86 **

non
linear

0.86 **

wrist linear 0.86 **

non
linear

0.90 **

both linear 0.90 **

non
linear

0.91 **

MP Force Transducer
Metrics

S/E
(combined mean force,
deltaz)

linear 0.62 **

non
linear

0.66 **

S/E
(F/ E/ AB/ AD mean
force)

linear 0.66 **

non
linear

0.69 **

Note: **P < 0.001, * P < 0.05. S/E = shoulder-elbow, FMA-UE = Fugl-Meyer
Assessment of Upper Extremity Motor Recovery after Stroke, BI=Barthel Index,
WMFT =Wolf Motor Function Test. MP (Total) = Motor Power, correlation
analysis with the Medical Research Council Motor Power score (MRC) using
both kinetic metrics and all possible kinematic metrics. MP Kinematic Force
Metrics = correlation model using shoulder kinetic metrics and only force
derived kinematic metrics (from the movement against resistance and
isometric stabilization tasks). MP Force Transducer Metrics = using only the
shoulder kinetic metrics with the MRC (mean shoulder force (deltaz) or
individual mean measures of shoulder abduction (AB), adduction (AD), flexion
(F), and extension (E))
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shoulder force (deltaz), circle joint independence, max-
imum displacement, and deviation. A significant correl-
ation was calculated, with a R = .86 (P < 0.001) for the
linear model and R = .87 (P < 0.001) for the nonlinear
model.
The same 5 wrist and forearm metrics as the FMA-UE

analysis were found to have a R > .5. The linear model
had a R = .88 (P < 0.001) and the nonlinear model
showed a R = .90 (P < 0.001).
The combined shoulder-elbow, wrist, and forearm ana-

lysis produced a R = .91 (P < 0.001) for the linear model
and the nonlinear model showed a R = .91 (P < 0.001).

MP kinematic force Out of the force derived shoulder-
elbow kinematic metrics and shoulder kinetic metrics, 3
were found to have a R > .5; offset, mean shoulder force
(deltaz), and maximum displacement. A significant cor-
relation was found of R = .86 (P < 0.001) for both the lin-
ear and nonlinear models.
Four wrist and forearm force derived metrics were

used for this analysis; both forearm and wrist offset, and
wrist and forearm overall aim. The linear model showed
a correlation of R = .86 (P < 0.001) and the nonlinear
model produced a R = .90 (P < 0.001).
For the combined analysis, there was a significant cor-

relation of R = .89 (P < 0.001) for the linear model and
R = .90 (P < 0.001) for the nonlinear model.

MP force transducer Using only the metrics derived
from the force transducer, the mean shoulder force
(deltaz) produced a moderate correlation of R = .62 (P <
0.001) for the linear model and R = .66 (P < 0.001) for
the nonlinear model. Using the 4 means of the individual
shoulder metrics (AB, AD, F, and E) produced a similar
result of R = .66 (P < 0.001) for the linear models and
R = .69 (P < 0.001) for the nonlinear model.

Correlation between clinical scales
The majority of the clinical scales selected for this study,
the FMA-UE, WMFT, and MRC, were highly correlated,
except for the BI. See Figs. 1 and 2 for a heatmap repre-
sentation of the shoulder-elbow and the wrist and fore-
arm results respectively.

Discussion
This study provides both incremental and novel ad-
vances to the methodology of outcome measure correl-
ation studies in stroke research. This is the first study to
our knowledge to investigate the value of including com-
prehensive distal (wrist and forearm) kinematic data and
compare the linear and nonlinear correlation models in
the outpatient, chronic stroke population. The methods
presented here build on previous work by this group in-
vestigating the nonlinear correlation model in the in-
patient population (Krebs et al., 2014; Agrafiotis et al.,
2021) and the linear correlation model in the chronic
outpatient population (Bosecker et al., 2010).
Of note, our results reveal higher correlation values

with clinical measures using kinematic and kinetic met-
rics compared to previous studies (see Additional file 2
for optimized neural network parameters.) (Bosecker
et al., 2010; Semrau et al., 2013; Krebs et al., 2014; Col-
ombo et al., 2005; Dukelow, 2017; Agrafiotis et al., 2021;
Zollo et al., 2011). Numerous factors may have influ-
enced this outcome. One reason may be the baseline
characteristics of the patient population (Table 4), which
represent a broader more distributed spectrum of pa-
tient impairment (FMA-UE of 7–57) than previous stud-
ies, which can also be explained from a mathematical
perspective (Additional file 1). Bosecker et al. (2010) re-
cruited a large sample of 111 patients in the chronic
stage of recovery with an admission FMA-UE of 7–38.
Both the FMA-UE and MRC scores were included in
their correlation analysis using a linear regression model,
but displayed lower R values (FMA-UE = .80 and MRC =

Table 4 Participant characteristics and admission results of clinical measures

Characteristic RobottDCS RobottDCS-Sham Overall

Participants (n [%]) 41 [50.0%] 41 [50.0%] 82 [100.0%]

Age (mean years, [range]) 66.4 [42–87] 69.2 [42–90] 67.8 [42–90]

Days from stroke to start of trial (mean days [range]) 1475.2 [226–6935] 1160.0 [151–6936] 1317.6 [151–6936]

Gender (n Female [%]) 16 [39.0%] 16 [39.0%] 32 [39.0%]

Stroke location (n cortical [%]) 26 [63.4%] 27 [65.9%] 53 [64.6%]

FMA-UE (mean [range]) 25.6 [7–57] 25.4 [7–55] 25.5 [7–57]

WMFT (mean [range]) 60.0 [1–169] 56.0 [0–167] 58.0 [0–169]

BI (mean [range]) 88.4 [10–100] 85.0 [15–100] 86.7 [10–100]

MRC (mean [range]) 46.8 [8–79.5] 44.1 [15–85] 45.5 [8–85]

Note: tDCS = transcranial direct current stimulation, FMA-UE = Fugl-Meyer Assessment of Upper Extremity Motor Recovery after Stroke, WMFT =Wolf Motor
Function Test, BI=Barthel Index, MRC =Medical Research Council Motor Power score
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.80) than what was found in this study, even for our lin-
ear model. Zollo et al. (2011) investigated the correlation
of robotic kinematics using data from 15 chronic pa-
tients post stroke with an admission FMA-UE of 8–36.
This group also used robotic measures to evaluate the
correlation with the FMA-UE and MRC using a linear
regression method, and reported a moderate R value for
the FMA-UE(R = .67) and strong correlation (R = .77) for
the MRC. It is well known that the value of a correlation
is greater when there is greater variability in the observa-
tions studied (Goodwin & Leech, 2006).
Consistent with the results of Bosecker et al. (2010),

kinematic submovement characteristics (see Table 2 for
metrics and definitions (Krebs et al., 1999)) had little in-
fluence on the correlation modeling between kinematics
and the clinical measures. The only submovement
metric seen to have a R > .5 was submovement duration,
which was selected for the BI correlation analyses
(which had the lowest correlation value.) Although sub-
movement characteristics had a low impact in both this
and Bosecker et al.’s (2010) correlation study, these met-
rics have been shown to be very important for enhan-
cing our understanding of UE motor recovery (Dipietro
et al., 2012; Rohrer et al., 2002).
In keeping with previous findings, the nonlinear model

consistently performed better than the linear correlation
model for predicting clinical measures (Table 3 and Add-
itional files 1 and 2). (Krebs et al., 2014; Agrafiotis et al.,
2021; Krakovska et al., 2019) Our findings contribute to
the justification for the convenient use of one (nonlinear)
model to predict clinical measures across the continuum
of care (acute, sub-acute, and chronic). The variation in
nonlinear and linear models of correlation are less dra-
matic than what is seen in the subacute population, likely
due to less variability in the patient presentation. (Kra-
kovska et al., 2019) The use of neural networks and a re-
fined metric selection algorithm was likely influential in
the superior correlation results described in this study.
The inclusion of wrist kinematic data is novel within

this field of study. Although fitting the wrist data in the
linear and nonlinear models showed a strong correlation
with the clinical measures, it did not substantially improve
the already high correlation provided by the shoulder-
elbow data alone. This finding is valuable for numerous
reasons. Clinically it is more efficient to only perform one
robotic evaluation, therefore the results from this study do
not support the need to complete both a wrist and
shoulder-elbow robotic evaluation in order to predict the
results of clinical measures. The clinician can select the
robot that best suits the patient’s impairments and goals
without compromising the ability to generate predictions
of clinical measures. We also saw that either robot is reli-
able at predicting the clinical scales in both high and low
functioning patients (Table 3).

Correlation among clinical measures was high, except
for the BI. The correlation between the FMA-UE and
MP (total, R = .94) in this study was higher than what
was published to date in the chronic stroke population.
Bosecker et al. (2010) reported a strong correlation be-
tween MP and both the FMA-UE (.79) and Motor Status
Scale (.77, a similar measure to the FMA-UE but con-
sisting of a finer grading scale for UE impairment for the
subacute population.) Of note, the study by Bosecker
et al. (2010) on chronic stroke survivors differed from
this study by using only a linear regression model. Krebs
et al. (2014) and Agrafiotis et al. (2021) also reported
high correlation with MRC and FMA-UE (R = .93).
Therefore the robot metrics were seen to predict the
outcome of FMA-UE, WMFT, and MRC consistently.
Of note, the BI analysis in this study indicates that the

measure does not correlate well with either the clinical
or robotic measures, confirming previous reports. (Chen
& Winstein, 2009; Mayo et al., 2002) In a recent large
cohort study of 434 subjects in the chronic stage of re-
covery, Mayo and colleagues (Mayo et al., 2002) reported
patients had a mean BI score of 90.6/100, yet 65% of this
population could not incorporate their affected UE into
ADLs. Sivan et al. (2011) also reported limited re-
sponsiveness of the BI involving chronic patients with
severe impairments. It appears there are significant
variations within and between the results of a pa-
tient’s BI score, which implies that a patient’s mood
and other factors may influence or bias the scoring of
the scale.
It is a common misunderstanding that the relative

weight of individual variables in the models and the
meaning of the regression model coefficients can be de-
termined. The confidence intervals calculated in our cor-
relation analysis were often large and contained zero,
which prompted an investigation into whether groups of
metrics used in the model were multicollinear. Multicol-
linearity occurs when there is a strong correlation
among independent variables, often leading to highly
significant regression models. Nonetheless information
about the individual contributions of each variable can-
not be determined. (Freund et al., 2006) It does not
affect the fit of a model or the ability to predict point es-
timates of the response variable. In addition, the valid-
ation data indicates how well the model generalizes. A
measure of multicollinearity is the variance inflation factor
(VIF) and is calculated by completing a linear regression
of xj on all other independent variables in the model. The
coefficient of determination, Rj2, for each variable is deter-
mined and VIF = [1/(1- Rj2)]. A common rule of thumb is
that a VIF greater than 10 indicates a high level of multi-
collinearity (corresponding to Rj2 = 0.9). We found that
multiple kinematic and kinetic variables had VIFs above
this value indicating that while these models are still valid
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Fig. 3 Unassisted proximal and distal movement attempts of three representative stroke participants at study baseline and completion
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to calculate clinical scores, the individual contributions of
each variable cannot be established.
Although the methodology used in this study led to

higher correlations for the clinical measures than previ-
ous studies, the results may not apply to all patient pop-
ulations. It is unclear if the superior correlations
generated with the nonlinear model using our method-
ology extrapolate to other phases of stroke recovery,
which warrants future investigation within the acute and
subacute population. The same limitation may apply to
the strength of wrist kinematic data correlating with
clinical measures. Contrary to our expectations, the wrist
data did not substantially improve the correlation value
compared to the shoulder-elbow result alone. As it ap-
pears that the time-course of the wrist recovery is rela-
tively delayed compared to the shoulder-elbow (Fig. 3),
we erroneously predicted that it would have had a big
impact. It remains to be tested whether the wrist data
may be more influential in the acute or subacute stages
of post-stroke recovery or milder cases. In addition, in-
stead of training a model that correlates with the total
FMA-UE score, it would be of high interest to explore
the correlation between the distal wrist robotic data and
the corresponding wrist sub-scale of the FMA-UE.

Conclusions
The improved method of correlation modeling for robotic
kinematics and clinical measures in this study is an im-
portant step towards objectively assessing and planning a
patient’s rehabilitation journey in the chronic stage of
stroke recovery. The often time consuming and subjective
nature of clinical measures and the growing access and
validity of robotic measures will likely increase the de-
mand for reliable correlation models such as the methods
described in this study. Robotic measures offer enhanced
objectivity of movement quality, accuracy, and
standardization that can improve our understanding of
the complex process of motor recovery. As this study con-
firms, robotic kinematics are well suited to representing
impairments in body function or structure but are perhaps
restricted in their ability to translate kinematic data to
performance of ADLs or participation in real-world envi-
ronments, which warrants further study.
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