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Abstract 

Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improv-
ing the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact 
with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted 
neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades 
and improving the health and quality of life of many patient populations. Despite these successes, implanted neural 
interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised 
of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted 
neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants 
in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsula-
tion of the device. This review describes the challenges faced by developers of neural interface systems, particularly 
devices already in use in humans. The mechanical and technological failure modes of each component of an implant 
system is described. The acute and chronic reactions to devices in the peripheral and central nervous system 
and how they affect system performance are depicted. Further, physical challenges such as micro and macro move-
ments are reviewed. The clinical implications of device failures are summarized and a guide for determining the sever-
ity of complication was developed and provided. Common methods to diagnose and examine mechanical, tech-
nological, and biological failure modes at various stages of development and testing are outlined, with an emphasis 
on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some 
of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface 
systems.
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Background
Implanted neural interfaces are electronic devices that 
interact with the nervous system to sense (record) or 
stimulate neural activity to treat neurological disorders. 
They differ slightly from other implanted bioelectronic 
devices, such as pacemakers, in that they are implanted 
in or near neural tissue, including the brain, spinal cord, 
or peripheral nerves (Fig. 1). Several neural interfaces for 
stimulating and recording, such as cochlear implants, 
deep brain stimulation (DBS), spinal cord stimulation 
(SCS), electrocorticography (ECoG), and depth elec-
trodes have market approval and have been used clini-
cally for decades with great success. Some of these 
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devices are used clinically “off-label” to explore new treat-
ment applications, and several emerging neural interface 
technologies are being developed and tested in commer-
cial and research investigational clinical trials (Fig.  2). 
The major components of implanted neural interface sys-
tems are: (i) the pulse generator (for stimulation) and/or 
data acquisition (DAQ) device (for recording), (ii) power 

and communication, (iii) packaging, (iv), lead wires and 
interconnects, and (v) electrode(s) (example of a cochlear 
implant system shown in Fig. 3).

Pulse generators deliver electrical current to activate 
the target neurons. Recording DAQ devices typically 
contain amplifiers and filters to increase the signal-
to-noise ratio of the recorded signal. Both stimulating 

Fig. 1 Illustration of neural interfaces that have been implanted in humans
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and recording devices might also have components for 
additional processing and control. While many clinical 
devices use fully implantable pulse generators, includ-
ing SCS and DBS, other devices, such as many models of 
cochlear implants, employ inductive coupling to trans-
fer power and control signals wirelessly across the skin. 
Furthermore, SCS and DBS implantable pulse generators 
sometimes require communication with external mod-
ules for data transfer or recharging.

Wireless power transmission, battery recharging, and 
communication to implanted neural interfaces typically 
uses inductive radio frequency (RF) or near-field coils on 
either side of tissue (for example, skin (Zeng et al. 2008) 
or dura mater (Powell et  al. 2017)). The internal and 
external RF coils must be coupled by overlapping physi-
cally as much as possible with a small thickness of tissue 
in between; this may be difficult in some anatomical loca-
tions such as the skull or back (Troyk and Rush 2009). 
The more electrodes in a neural interface the higher the 
power and data rate transmission requirements, increas-
ing the bandwidth and power consumption (Nair et  al. 
2023). Data and power transmission are limited due to 
safety restrictions: the power density in the body must 
be < 80 mW/cm2 to avoid tissue damage from heating 
(Seese et al. 1998).

Implanted electronics are packaged, typically in rigid 
Titanium housing (Sidambe 2014), which acts as a bio-
compatible hermetic seal. Hermetic seals keep the 
enclosed electronics safe and sound from the moisture 
and ions in the tissue (Merrill 2014). Wires connect the 
internal components to external components such as 
electrode leads via a feedthrough assembly that often 
consists of a ceramic or fused silica insulator (Nagarkar 
et al. 2017).

Lead wires connect the electrodes to the pulse gen-
erator and/or DAQ unit. They are insulated, often with 

silicone, polyimide, parylene, or other flexible inert poly-
mer materials (Barrese et al. 2013; Kuo et al. 2013).

Electrodes are the conductive materials that inter-
face with neurons. They come in many forms including 
rings, pads, and shanks and can be penetrating or non-
penetrating into the neural tissue (Fig. 4). Electrodes can 
vary greatly in size, depending on the neural target and 
electrode density, although electrodes on clinically avail-
able leads are more similar to each other. Some electrode 
designs, such as those for intraspinal microstimulation 
or longitudinal intrafascicular electrodes (LIFEs), use 
a continuous material for the lead wire and electrode, 
where the electrode is simply the de-insulated portion 
of the lead (Bamford et  al. 2017; Rijnbeek et  al. 2018). 
Depth electrodes are similar in design to many clinically-
available implanted electrodes; however, they come in a 
hybrid version where microwires splay from the tip of the 
array to record from single neurons (Fu and Rutishauser 
2025). Most clinical electrodes are comprised of plati-
num or platinum-iridium alloys (Cogan 2008; Ford 2010; 
Stöver and Lenarz 2011). Pad-type electrodes, including 
those used for transverse intrafascicular multichannel 
electrodes (TIMEs) and ECoG, use sputtering, etching, 
stamping, or welding manufacturing techniques (Bore-
tius et al. 2010; Konerding et al. 2018). Many other elec-
trodes, such as cylindrical electrodes or those used for 
intracortical interfaces, require metal bonding or weld-
ing (Barrese et al. 2013). Coatings on the electrodes are 
sometimes used to increase the conductivity; commonly, 
iridium oxide is used (Woeppel et al. 2021).

Many implanted neural interfaces remain effective in 
humans for years to decades (Table 1). Despite the great 
successes of implanted neural interface systems, each of 
the aforementioned components is a potential source 
of failure. Furthermore, each application has specific 
challenges, such as surgical access, safe implantation, 

Fig. 2 Examples of implantable neural interfaces that have been implanted in humans. Some of these technologies have market approval 
for clinical use, some are used clinically off-label, while many others are under investigation in academia and in industry and are limited to clinical 
trials. References: Deep brain stimulation: (Drobisz and Damborská, 2019; Kalia et al. 2013; Kogan et al. 2019; Li and Cook 2018; Rapinesi et al. 2019; 
Wang et al. 2018); Electrocorticography: (Berger and Ojemann 1992; Leuthardt et al. 2004); Depth electrodes: (Krusienski and Shih 2011; Lehongre 
et al. 2022); Intracortical electrode array: (Ajiboye et al. 2017; Barry et al. 2023; Collinger et al. 2013; Deo et al. 2024; Drew 2024; Flesher et al. 2021; 
Hosman et al. 2023; Rastogi et al. 2021; Willett et al. 2023, 2021); Endovascular electrode array: (Mitchell et al. 2023; Oxley et al. 2020); Epidural spinal 
cord stimulation (Angeli et al. 2018; Barolat et al. 1988; Bose et al. 2025, 2024; Capogrosso et al. 2024; Carhart et al. 2004; Chandrasekaran et al. 2020; 
Darrow et al. 2019; Dekopov et al. 2015; Gill et al. 2018; Goodwin et al. 2023; Harkema et al. 2018; Iversen et al. 2024; Nanivadekar et al. 2023; Pinter 
et al. 2000; Powell et al. 2022; Raslan et al. 2007; Richardson and McLone 1978; Shealy et al. 1967; Singh et al. 2023; Squair et al. 2021; Tator et al. 2012; 
Wagner et al. 2018); Cochlear implant: (Shepherd et al. 2013; Zeng et al. 2008); Retinal prosthesis: (Ayton et al. 2014; Christie et al. 2022a; Gregori et al. 
2016); Vagus nerve stimulation (Austelle et al. 2022; Dawson et al. 2021; De Ferrari et al. 2011; Dibué-Adjei et al. 2019; Koopman et al. 2016; Kosel 
et al. 2011; LivaNova 2023; Rush et al. 2005; Sinniger et al. 2020); Dorsal root ganglion stimulation: (Deer et al. 2019; Liem et al. 2013; Sverrisdottir 
et al. 2020); Peripheral nerve stimulation: (Charkhkar et al. 2018; Gan et al. 2012; George et al. 2019; Goree et al. 2024; Raspopovic et al. 2014; Tan 
et al. 2014); Functional electrical stimulation: (Chaplin 1996; Hardin et al. 2007; Kobetic et al. 1999; Makowski et al. 2021; Peckham et al. 2001); 
Intramuscular electromyography: (Hart et al. 2011; Heald et al. 2019; Page et al. 2018); Intraspinal microstimulation: (Nashold et al. 1981, 1972); Sacral 
nerve stimulation (Hull et al. 2013; Sukhu et al. 2016; Tanagho et al. 1989)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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movement of local tissues, and electrochemical reac-
tions at the electrode-tissue interface. The effectiveness 
and reliability of neural interfaces are limited by these 
technological and biological challenges that can impede 
translation and years-long use of the devices in humans. 
In the following sections, we will review several of these 
barriers and how they affect device longevity, with a 
focus on devices that have been implanted in humans. 
We will then highlight failure modes of devices dur-
ing chronic in  vivo implantation with specific examples 
reported from clinical use or clinical trials. We will also 
review failure modes associated with the development of 
novel implantable devices. With each failure mode, solu-
tions arise to resolve the issues. We conclude with novel 
neural interfacing technologies and how they may be able 
to mitigate some of the issues experienced by traditional 
neural interface systems during long-term implantation.

I knew you were trouble
There are many reasons for the reduced effectiveness 
or even failure of implanted neural interfaces, including 
technological, mechanical, and biological barriers (the 
latter literally forms a barrier). Assuming the manufac-
turing process was consistent and of high quality and the 
surgical implant was free from iatrogenic damage to the 
device or recipient (see Barrese et al. 2013 for examples), 
there are still many points of failure for implanted neural 
interfaces. Characterization of failure modes for the dif-
ferent types of neural interfaces varies. Brain-computer 
interfaces (BCIs) using intracortical electrodes often have 
a reduced ability to record from neurons over time, lead-
ing many researchers to investigate why these interfaces 
have a limited lifetime (Barrese et al. 2013; Chestek et al. 
2011; Colachis et al. 2021; Kozai et al. 2012b; Prasad et al. 
2014). However, all neural interfaces pose challenges with 
long-term communication with the nervous system.

Fig. 3 Cochlear implant, demonstrating the variety of components of implanted neural interfaces. The magnets connect the external (left) 
and internal (right) units across the skin. The microphone on the external unit records sound, the sound processor converts the sound 
recordings to a digital signal with stimulation commands, the stimulation commands and power from the battery are sent from the external 
to the internal transceiver, the stimulation commands are converted into a stimulation output by the pulse generator, the lead wires carry 
the current to the electrodes, which generate an electric field that activates auditory neurons that lie outside the cochlea. Recording of impedance 
at the electrode-tissue interface can also occur, where the DAQ records the electrode impedance with reference to the ground electrode, 
and transmits these data to a different external transceiver to transfer the data to a computer for viewing by clinical team members

Fig. 4 Types and dimensions of different types of implanted neural interface electrodes in humans. A Penetrating electrodes, B Non-penetrating 
electrodes. References: UEA: (Blackrock Neurotech 2023a; Campbell et al. 1991); USEA: (Blackrock Neurotech 2023b); ISMS: (Bamford et al. 2017; 
Dalrymple et al. 2018; Nashold et al. 1972); LIFE: (Malagodi et al. 1989; Rijnbeek et al. 2018); TIME: (Boretius et al. 2010); DBS: (Butson and McIntyre 
2006; Medtronic 2022); Depth electrodes: (Fu and Rutishauser 2025); ECoG: (Dubey and Ray 2019); Retinal: (Ayton et al. 2014); Stentrode: (John et al. 
2019); Vagus: (Mehta et al. 2018; Suminski et al. 2023); PNS cuff: (Fisher et al. 2009); Cochlear: (Dalrymple et al. 2019; Nguyen et al. 2013); SCS linear: 
(Boston Scientific, 2017; Medtronic 2017); SCS paddle: (Medtronic 2017); FINE: (Tyler and Durand 2002); Sacral: (Markland et al. 1972; Rijkhoff et al. 
1997, 1994); DRGS: (Al-Kaisy et al. 2019)

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Delicate electronics
Implanted pulse generators and DAQs typically consist 
of a battery and electronic components. Fully implant-
able stimulators and recording DAQs allow the omission 
of transcutaneous wires, which can be a source of infec-
tion and fistula formation (DeMichele et  al. 2014; Weir 
et al. 2009). However, this means that a revision surgery 
is required to replace the battery or unit for devices that 
do not have rechargeable batteries, or rechargeable bat-
teries that eventually lose the ability to recharge. A recent 
study found that patients receiving DBS prefer fixed-life 
batteries compared to rechargeable because not having 
to recharge batteries impacts their lifestyle less (Khaleeq 
et  al. 2019); however, this patient population is typi-
cally older and may not require revision surgery in their 
remaining lifetime. Another important factor to consider 
is that the risk of infection is higher for impulse generator 
replacement than the initial implant procedure (Pepper 
et al. 2013). Therefore, it is imperative that the electronic 
components are reliable and the battery lasts as long as 
possible.

Complex systems that require onboard control systems 
or signal processing will require more power, demand-
ing more from the battery or may require a larger battery. 
Larger batteries will require larger housing, limiting the 
placement of the housing and possibly requiring longer 
lead wires between the housing and the electrodes. Large 
pulse generators and DAQ housing can also increase 
the risk of developing dermatitis or pressure sores that 
degrade the tissue surrounding the housing implant 
(Choi et  al. 2021; Dujari and Gold 2019; Hamada et  al. 
2006). Severe pressure sores and wound complications 

such as hematoma, seroma, biofilm formation, skin ero-
sion, and dehiscence occur in 1 – 27% of patients and can 
result in loss of skin over the pulse generator and even 
the need for explantation (Falowski et  al. 2019; Hanna 
et al. 2024; Prabhala et al. 2023; Spindler et al. 2023; Xiao 
et al. 2024). Form factor and stiffness of the housing likely 
affect wound healing and the incidence of pressure sores; 
however, these factors are not reported, likely because 
the housing is identical to non-neural implants, including 
pacemakers (Clingan et al. 2020).

Notably, the largest part of the power budget is for 
wireless communication. Heating from data and power 
transmission can occur from both the RF coils and the 
implanted circuitry (Troyk and Rush 2009). Wireless 
transmission is also complicated by the desire to reduce 
the size of the implanted coil, as many designs seek to 
be compact and completely wireless, such as the floating 
microelectrode array for intracortical visual prostheses 
(Troyk et al. 2005) and peripheral nerves (Bredeson et al. 
2015). These floating arrays have all electrodes, electron-
ics, and RF coils onboard a single device. To minimize 
the implant fingerprint means using a small diameter 
(on the order of mm or smaller) implanted RF coil. The 
reduced size of the internal RF coil reduces the coupling 
of the coils, which then demands a higher intensity mag-
netic field and increases the power requirements (Nair 
et  al. 2023; Troyk and Hu 2013). Power consumption 
needs to be considered for both external and implanted 
pulse generators and DAQs, as high power consumption 
reduces battery life and necessitates more frequent bat-
tery recharging or replacement.

Table 1 Reports of implanted device duration in humans

Name Duration Human Implants

Deep brain stimulation (DBS) Years to decades (Haberler et al. 2000; Moss et al. 2004)

Electrocorticography (ECoG) Months to years (Nurse et al. 2018)

Depth electrodes Weeks (Lehongre et al. 2022)

Intracortical electrodes Years to decades (Hughes et al. 2021; Sponheim et al. 2021; Szymanski et al. 
2021; Towle et al. 2020; Woeppel et al. 2021)

Stentrode endovascular electrode array Years (Mitchell et al. 2023)

Spinal cord stimulation (SCS) Years (Cameron 2004; Costandi et al. 2020)

Intraspinal microstimulation (ISMS)  > 10 years (Nashold et al. 1981)

Dorsal root ganglion stimulation (DRGS) Years (Deer et al. 2020; Morgalla et al. 2018)

Cochlear implant Years to decades (Kim et al. 2020; Nadol et al. 2014; O’Malley et al. 2017)

Retinal prosthesis Months to Years (Christie et al. 2022b; Daschner et al. 2017; Muqit et al. 2019)

Vagus nerve stimulation Years to decades (Dibué-Adjei et al. 2019; Siddiqui et al. 2010)

Peripheral nerve stimulation (penetrating) Years (Čvančara et al. 2023; George et al. 2020)

Peripheral nerve stimulation (cuff ) Years (Christie et al. 2017; Fisher et al. 2009)

Functional electrical stimulation Years (Kobetic et al. 1999; Triolo et al. 2018, 2012)

Sacral stimulation  > 5 years (Hull et al. 2013; Siegel et al. 2018)



Page 8 of 36Dalrymple et al. Bioelectronic Medicine            (2025) 11:6 

Maintaining a hermetic seal with high-density 
feedthroughs is still a challenge facing implanted elec-
tronics. Hermetic seal failure can lead to a host of prob-
lems, including damage to electronic components, 
corrosion, short circuits, open circuits, current leak-
age, damage to or change in properties of wireless coil 
wires, and loss of amplifier sensitivity (Breach et al. 2010; 
DeMichele et al. 2013; Merrill 2014).

Lead wire damage can occur at implant, during the 
implant period, or upon removal. Many designs allow 
for bundling or coiling to provide strain relief, which is 
important for preventing dislodgement of the implants 
(Dadd et  al. 2011; Greenberg et  al. 2002; Marsolais and 
Kobetic 1986). However, lead wires are susceptible to 
mechanical fatigue from frequent bending, especially 
when the lead wires run through regions of the body 
subject to movement, such as the limbs (Pena et al. 2017; 
Phillips et  al. 2004), the eyes (Ayton et  al. 2014), the 
supraclavicular region (Mohit et  al. 2004), and even the 
spinal cord (Toossi et  al. 2017). Lead wire fractures are 
common in people with dystonic movement disorders 
(Yianni et al. 2004). Lead wire damage can induce cracks 
in the insulation, resulting in electrical leakage (Bredeson 
et al. 2013; Lyons et al. 2004; Prasad et al. 2014). Damage 
to lead insulation not only reduces the effectiveness of 
the device due to less current reaching the target tissue, 
but also poses a safety risk through off-target stimulation 
(Pena et al. 2017). Deinsulation of the lead wire can also 
be an issue, especially for shank electrodes (Prasad et al. 
2014, 2012). Peeling of the insulation away from the tip 
of the electrode during insertion can increase mechani-
cal damage to the tissue. Deinsulation also increases the 
surface area of the electrode, which can reduce specific-
ity and change the expected electrochemical  behaviour 
of the electrode. Lead wires are also susceptible to break-
age, which results in an open circuit and could lead to 
device failure. Additionally, lead wire breakage can result 
in fragments remaining inside the body, as reported fol-
lowing the removal of sacral stimulation leads (Rueb et al. 
2020).

Pad electrodes are at risk of delamination or loss of 
bonding from the carrier (Čvančara et al. 2020). Delami-
nation can occur when the bond between the pad elec-
trode has poor adhesion with the substrate or when 
liquid leaches in between the pad electrode and substrate 
(Dalrymple et  al. 2019; Green et  al. 2012; Prasad et  al. 
2014). Many electrodes, such as ring electrodes, some 
pad electrodes, or electrodes used for intracortical inter-
faces, require metal bonding or welding (Barrese et  al. 
2013). This junction is a potential source for discontinu-
ity and may result in conduction failure due to an open 
circuit or result in current leakage. Furthermore, manu-
facturing differences have been identified as a source of 

failure for intracortical electrode arrays (Prasad et  al. 
2012). Deformities in the tips of the electrodes from laser 
cutting have occurred, as well as differences in the extent 
of the deinsulation of the wires, even in arrays manufac-
tured in the same batch. These manufacturing defects 
led to insulation cracks and increased tissue response. 
Intracortical electrode arrays are quite brittle, especially 
those made of silicon or ceramic, and these electrodes 
must be handled with care during implantation (Barrese 
et al. 2013; Ward et al. 2009). Reducing the size of elec-
trodes can increase specificity and reduce the implant 
profile in the tissue; however, smaller electrodes are more 
difficult to handle and are often extremely fragile. Addi-
tional challenges with small and high density electrodes 
are increased power and communication requirements 
(Troyk and Rush 2009), cross-talk, increased impedance 
(Nelson et al. 2017), and increased charge density during 
stimulation. Increased charge density can lead to focal 
tissue damage (discussed more below).

Electrode geometry influences the charge density dur-
ing electrical stimulation. Electrodes with irregular 
geometries that are not spherical will have a non-uniform 
charge density (Bruckenstein and Miller 1970; Harnack 
et  al. 2004). For example, electrode pads will accumu-
late charge on the edges (Wiley and Webster 1982), and 
penetrating electrodes will accumulate charge at the tip 
(McCreery et al. 2010). When charge is injected into the 
tissue through an electrode, the reactions at the elec-
trode-tissue interface can be described as reversible or 
irreversible. Irreversible reactions lead to the electrolysis 
of water; the cathodic and anodic potentials that cause 
the electrolysis of water are known as the water window 
(Cogan 2008). Water hydrolysis results in the formation 
of hydrogen and oxygen gases, a pH change at the inter-
face from hydroxyl ions, the formation of reactive oxida-
tion species, and electrode dissolution and/or corrosion 
(Cogan 2008; Merrill et  al. 2005; Shepherd et  al. 2021). 
These reactions may lead to electrode failure, tissue reac-
tivity, and necrosis. Using charge-balanced waveforms 
that are limited in potential according to the water win-
dow can help minimize irreversible reactions (Brummer 
and Turner 1977). However, focal areas of charge accu-
mulation as a result of electrode geometry can lead to 
local irreversible reactions between the electrode and 
tissue. Furthermore, at areas of high charge density, local 
corrosion or tissue damage may occur (McCreery et  al. 
1990; Shepherd et  al. 2021; Wiley and Webster 1982). 
Electrode corrosion is worse in the presence of reactive 
oxygen species (Patrick et al. 2011). Electrode corrosion 
can result in the dispersion of metal particulates into the 
surrounding tissue (Dymond et  al. 1970; Patrick et  al. 
2011; Shepherd et al. 2021, 2020, 2019). Corrosion is not 
limited to stimulating electrodes. Recording electrodes 
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can undergo corrosion due to material degradation by 
the foreign body tissue response (described below; Mer-
rill 2010; Prasad et  al. 2012). The presence and rate of 
corrosion is influenced by both the tissue environment 
and material. For example, Tungsten and stainless steel 
electrodes are more likely to corrode than Platinum-
Iridium or Titanium electrodes (Cogan 2008; McCarthy 
et al. 2011; Patrick et al. 2011; Prasad et al. 2014, 2012). 
Platinum compounds, Tungsten ions, and Silver can 
all be cytotoxic, limiting the lifetime of the electrodes 
(Dymond et al. 1970; Patrick et al. 2011; Shepherd et al. 
2021). However, Platinum is able to convert oxidative 
species to water, rendering the oxidative species inert and 
less dangerous (Patrick et al. 2011).

A treacherous environment
Any foreign material implanted in the body, includ-
ing biocompatible materials, will evoke a foreign body 
response, which can reduce the efficacy of implanted 
neural interfaces. Additionally, with any surgical proce-
dure, there is always a risk of infection. Infections follow-
ing device implantation can result in biofilms forming on 
the implant, making clinical treatment difficult and could 
require device removal in addition to permanent tissue 
damage. The foreign body response, or tissue response, 
is the immune system’s rejection of a foreign body. The 
tissue response is also influenced by the extent of the 
trauma from insertion; less invasive, smaller devices 
will evoke a smaller tissue response. The failure of intra-
cortical electrodes to record from single neurons long-
term has been largely attributed to the tissue response 
of the brain (Moxon et al. 2009). The tissue response to 
implants in the central and peripheral nervous systems 
involve different immune cells and can be divided grossly 
into acute and chronic phases. The acute phase can also 
be separated into acute (within 24  h) and sub-acute 
phases (within a few days).

Central nervous system tissue response
The central nervous system (CNS) includes the brain, 
cerebellum, brainstem, and spinal cord. The CNS is 
contained within the blood–brain barrier (BBB), which 
separates the CNS from the vascular system. The BBB 
is composed and maintained by the neurovascular unit, 
which is comprised of endothelial cells (bound by tight 
junctions), pericytes, microglia, astrocytes, and neurons 
(Bennett et  al. 2019; Hawkins and Davis 2005) (Fig.  5). 
The neurovascular unit provides a structural barrier and 
metabolic support to the CNS. Neural interface devices 
that target the CNS compromise the BBB during the 
implant procedure (Moxon et  al. 2009). These include 
electrodes for DBS, intracortical recording and stimula-
tion, and intraspinal microstimulation. Initial electrode 

insertion causes mechanical damage to neurons, myelin, 
and vasculature (Jorfi et  al. 2015; Mirkiani et  al. 2024). 
This disruption of the BBB and vasculature causes sys-
temic immune cells such as macrophages to infiltrate the 
implant site (Fig.  6A). Macrophages can remain at the 
implant site chronically (McConnell et al. 2009). Factors 
released by immune cells can oxidize electrode surfaces 
and even create cracks in lead insulation (J. M. Anderson 
et al. 2008a, b; Kao et al. 1994). Red blood cells also enter 
the implant site, increasing iron levels in the neural tis-
sue (Wang 2010). Hemolysis after bleeding releases more 
iron into the implant site. Iron is dangerous in neural tis-
sue because it causes Fenton reactions (Goldstein et  al. 
2003), which lead to excitotoxicity (Regan and Panter 
1996), as well as the formation of reactive oxygen species 
that cause oxidative stress and neuronal degeneration, 
injury, and death (Goldstein et al. 2003; Regan and Panter 
1996; Ward et al. 2014).

In the sub-acute phase of the reaction to implants in 
the CNS, resident microglia become activated (Fig. 6B); 
they transition from a dormant surveyor cell to a phago-
cytic cell, cleaning cellular debris and producing pro-
teins for iron storage (Dheen et al. 2007; McCarthy et al. 
2018; Polikov et al. 2005). The activated microglia release 
pro-inflammatory factors such as reactive oxygen spe-
cies, nitric oxide, and reactive nitrogen species, which 
contribute further to localized neural degeneration and 
death (Biran et  al. 2005; Block et  al. 2007), additional 
damage the BBB (Bennett et al. 2018), and degrade elec-
trode materials (Takmakov et al. 2015). The pro-inflam-
matory factors released by the activated microglia lead 
to the migration and activation of even more microglia 

Fig. 5 Cross-section of a blood vessel in the central nervous system, 
illustrating the neurovascular unit. The neurovascular unit maintains 
the blood–brain barrier and is comprised of endothelial cells, 
pericytes, microglia, astrocytes, and neurons
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Fig. 6 Acute, sub-acute, and chronic tissue response to implanted neural interfaces in the central nervous system
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from the surrounding parenchyma (Hermann and Capa-
dona 2018). Activated microglia typically stay within a 
20–35 µm thick perimeter around the electrode in both 
brain and spinal cord implants (Ersen et al. 2015; McCo-
nnell et  al. 2009), leading to an increased impedance 
and reduced efficacy of the implant. A leaky BBB allows 
further influx of macrophages from the circulatory sys-
tem to infiltrate the implant site (Ravikumar et al. 2014). 
Macrophages are activated and release or initiate the 
synthesis of inflammatory factors and mediators such 
as reactive oxygen species, proteases,  tumour necro-
sis factor (TNF)-α, interleukin (IL)-1-β, enzymes, acids, 
and nitric oxide in an attempt to and seek to destroy the 
implant (Bennett et al. 2019; Tresco and Winslow 2011). 
These factors released by macrophages are also neuro-
toxic and can induce tissue damage in the region sur-
rounding the implant. Activated macrophages have been 
observed at the implant site into the chronic stage of the 
tissue response. When electrodes are implanted near a 
major blood vessel without damaging it, astrocytes and 
microglia activity is still increased (Kozai et  al. 2012b). 
The implantation of microelectrodes leads to an up-reg-
ulation of chondroitin sulfate proteoglycans (CSPGs) at 
the electrode-tissue interface (Zhong and Bellamkonda 
2007). CSPGs are a component of the extracellular matrix 
and inhibit neural regeneration in the tissue adjacent 
to the implant site (Hynds and Snow 1999; Kuffler et al. 
2009), contributing to an increased impedance of the 
electrode-tissue interface, which reduces the signal-to-
noise ratio for recording electrodes and limits the electric 
field for stimulating electrodes.

In the chronic phase of the tissue response to an 
implant in the CNS, which occurs within days to weeks, 
microglia are less prevalent and astrocytes become 
hypertrophic and migrate to the implant site (Hermann 
and Capadona 2018) (Fig.  6C). Astrocytes isolate the 
implant from the surrounding tissue by forming a fibrous 
capsule around the electrode, known as the glial scar 
(Biran et  al. 2005; Turner et  al. 1999). Electrode encap-
sulation is further supported by fibroblasts from the 
meninges, specifically the pia mater (Barrese et al. 2013). 
Gliosis also occurs along the electrode tract, but is simi-
lar for stimulating and non-stimulating electrodes in the 
spinal cord (Bamford et  al. 2010). Electrical stimulation 
has been shown to dampen the tissue response to DBS 
electrodes (Lempka et  al. 2009), but is dependent on 
stimulation parameters. The collective effects of the glial 
scar reduce the number of neurons via neuronal degen-
eration, ultimately reducing the signal-to-noise ratio 
and electric field strength.

Non-penetrating neural interfaces in the CNS also 
evoke a tissue response. Micro-ECoG arrays implanted 
on rat cortices become encapsulated with fibrous scar 

tissue from the meninges (Schendel et al. 2014). Retinal 
implants typically do not compromise the blood-retinal 
barrier and therefore are not susceptible to the negative 
effects of the systemic immune system and iron. How-
ever, retinal microglia respond to injury within min-
utes (Eter et al. 2008; Lee et al. 2008) and migrate to the 
implant upon contact (Opie et  al. 2012); the rest of the 
typical CNS tissue response follows. Electrical stimula-
tion on the cortical surface can evoke a tissue response, 
where the extent of fibrosis is proportional to the charge 
density (Brown et al. 1977; Dauth et al. 1977). Conversely, 
recording electrodes implanted endovascularly in the 
brain become integrated into the blood vessel wall over 
time, avoiding the tissue response of the CNS (Opie et al. 
2017; Oxley et al. 2016).

Peripheral nervous system tissue response
The peripheral nervous system (PNS) includes the spinal 
and cranial nerves. The auditory nerve becomes a periph-
eral nerve as it enters the cochlea; cochlear implants 
activate auditory neurons via an electric field surround-
ing the electrodes and transmitted in the perilymph (i.e., 
cochlear implants do not directly interface with neurons). 
The tissue response in the cochlea also involves the same 
cells (macrophages) and reactions as the PNS (Foggia 
et al. 2019). The exception is a severe and abnormal tis-
sue response to a cochlear implant: neo-ossification (Dal-
rymple 2021; Foggia et al. 2019; Nadol et al. 2014, 2001). 
Neo-ossification, or new bone growth, occurs in the 
cochlea due to severe insertion trauma (Bas et al. 2015). 
Neo-ossification can exacerbate the loss of residual hear-
ing and reduce the efficacy of cochlear implants by form-
ing a resistive barrier between the electrodes and the 
auditory neurons (Foggia et al. 2019).

Implanting a device in the periphery causes trauma 
and vasculature damage. Excessive bleeding can lead to 
a hematoma, which can increase the risk of infection. 
The initial response to a foreign body in the periphery is 
the adsorption of blood plasma proteins, including albu-
min, fibrinogen, fibronectin, kininogen, complement, 
γ-globulin, and vitronectin, onto the surface of the 
implant (J. M. Anderson et al. 2008a, b; Klopfleisch and 
Jung 2017). These proteins form a provisional matrix 
around the implant, which then develops into a thrombus 
and eventually into a fibrin clot.

The acute inflammatory response to implanted devices 
includes the infiltration of neutrophils (J. M. Ander-
son et al. 2008a, b; Bas et al. 2015; Fig. 7A). Neutrophils 
phagocytose debris and bacteria and enter the implant 
site within a few hours (Kastellorizios et  al. 2015). In 
the sub-acute phase, mast cells enter the implant site 
and degranulate, releasing histamine and inflammatory 
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Fig. 7 Acute, sub-acute, and chronic tissue response to implanted neural interfaces in the peripheral nervous system
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cytokines (Tang et  al. 1998; Fig.  7B). Histamine is also 
important for the recruitment of phagocytes such as neu-
trophils and macrophages to the implant site.

The presence of macrophages and lymphocytes mark 
the chronic phase of the tissue response (Fig. 7C). Mac-
rophages and lymphocytes surround and adhere to the 
implant (Foggia et  al. 2019; Klopfleisch and Jung 2017). 
Macrophages release several chemoattractants that 
further recruit more macrophages to the implant site 
(Broughton et  al. 2006). As in the CNS tissue response, 
macrophages release factors and mediators that attempt 
degrade the implant. If the foreign body remains, mac-
rophages can fuse together to form foreign body giant 
cells (FBGCs) (Klopfleisch and Jung 2017; Sheikh et  al. 
2015). FBGCs, if present, continue to release factors in 
an effort to completely break down the implant (Foggia 
et  al. 2019; Henson 1971). In response to macrophage 
activation and the presence of FBGCs, fibroblasts and 
endothelial cells migrate to the implant site and prolifer-
ate (Foggia et al. 2019; Klopfleisch and Jung 2017). They 
release extracellular matrix proteins such as collagen to 
form granulation tissue around the implant. Over time, 
the granulation tissue forms an irreversible fibrous cap-
sule around the implant (Lee et al. 2016), increasing the 
impedance of the electrode-tissue interface.

Nerve implants that do not penetrate the epineurium, 
such as cuff electrodes on the peripheral and vagus 
nerves, also induce a foreign body response, albeit milder 
than for penetrating electrodes (Rodríguez et al. 2000). A 
risk with cuff electrodes is that they are too tight around 
the nerve, inducing a compression injury that could lead 
to permanent nerve damage distal to the implant (Grill 
and Mortimer 2000). Additionally, the stiffness of the 
cuff electrode can influence the tissue response, with a 
greater tissue response occurring with more stiff elec-
trodes (Stiller et al. 2019). A spiral cuff is used in clinical 
applications to reduce the risk of nerve compression and 
allows for short-term swelling of the nerve following ini-
tial implantation (Grill and Mortimer 2000; Naples et al. 
1988). The tissue response to a cuff electrode includes 
encapsulation with macrophages, fibroblasts, and col-
lagen, as well as focal regions with perineurial thicken-
ing, fibrosis of the endoneurium, thinning myelin, and 
reduced axonal density (Grill and Mortimer 2000; Payne 
et al. 2019).

Device encapsulation
Barring a continued inflammatory response and device 
failure, the final stage of the tissue response in both the 
central and peripheral nervous systems is device encap-
sulation. Encapsulation occurs because the immune 
cells are unable to digest the implant; instead, a protec-
tive barrier is formed to separate the device from the 

surrounding healthy tissue. As a result, the impedance 
at the electrode-tissue interface is elevated, but is typi-
cally stable (Dalrymple et al. 2020a; Groothuis et al. 2014; 
Jeffery et al. 2014; Wilk et al. 2016; Williams et al. 2007; 
Xu et  al. 1997). Device encapsulation complicates the 
removal or replacement of implants or implant compo-
nents because the scar tissue can integrate strongly to the 
device and surrounding tissues (Merrill 2014). However, 
there are benefits to encapsulation, including physical 
stability of the implant and protection from macrophage-
secreted factors (Jorfi et al. 2015).

Micro‑ and macro‑motion: all you had to do was stay
Migration of lead wires and implanted electrodes can 
occur if there is any tension on the lead wires, or in 
response to gravity (such as with SCS, DRG, or sacral 
stimulation electrodes) (Cameron 2004; Huygen et  al. 
2020; Lyons et  al. 2004; Nanivadekar et  al. 2023; Zbar 
2014). Lead wire migration or even complete removal of 
electrodes can occur if the implant is not secured, lead-
ing to device failure. However, not all implanted devices 
require lead fixation; cochlear implants remain stable in 
the temporal bone and do not require additional fixa-
tion of the lead wires. Lead wire migration could possibly 
cause damage to nearby structures and warrant a revision 
surgery for removal or reimplantation of components. 
The physical stability provided by the tissue response can 
reduce the risk of lead migration and electrode removal, 
instead securing the devices in place. However, the tissue 
response around the implant can also increase stiffness of 
the lead wires and electrodes, compounding the risk of 
further tissue damage from movement. Tissue encapsu-
lation around micro-implants, such as intracortical elec-
trodes, can displace or extrude the implant, leading to a 
loss of neuronal recordings due to an increased distance 
from the electrode (Barrese et al. 2013; Rousche and Nor-
mann 1998).

Perpetual movement of an implanted neural inter-
face relative to the tissue can evoke an ongoing tissue 
response. Movements can be divided into two catego-
ries: macro-motion and micromotion. Macro-motion is 
larger-scale movements of the implanted devices relative 
to the tissue. Examples include movements of the spinal 
cord relative to the spine, which could affect the mechan-
ical and electrode stability of intraspinal electrodes 
(Toossi et  al. 2017), or intramuscular or intrafascicular 
electrodes shifting relative to muscles during limb move-
ments (Pena et  al. 2017). Relative movements between 
the tethered fixation points of the implanted devices and 
the tissue can lead to lead wire tension and, in extreme 
cases, partial or complete removal of the implant (Biran 
et al. 2007; Kim et al. 2004). Furthermore, as mentioned 
above, repeated bending and tension on the lead wires 
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can induce metal fatigue and fracture, ultimately causing 
lead wire breakage.

Micromotions are more subtle movements of the tis-
sue relative to the implanted shank or electrodes. Micro-
motion can be caused by respiration, heartbeat, changes 
in blood pressure, changes in cerebrospinal fluid (CSF) 
pressure, and general movements within the intersti-
tial space (Kozai et al. 2015; Mahajan et al. 2020). Tissue 
damage occurs during micromotion due to a mechani-
cal mismatch between stiff shanks and electrodes and 
the soft tissue (Barrese et  al. 2013; Goldstein and Salc-
man 1973; Groothuis et al. 2014; Subbaroyan et al. 2005). 
Micromotion can induce compression or shearing of sur-
rounding neural tissue (Cheung 2007), inducing a more 
vigorous tissue response (Kim et  al. 2004). If electrodes 
are sharp, micromotion produces the strongest tissue 
response and gliosis at the tips (Edell et  al. 1992; Kozai 
et  al. 2015; McCreery et  al. 2010). The tips themselves 
undergo changes in their structure and function due to 
micromotion, including deterioration and recessing, 
which results in a loss of recording signal over time, and 
insulation cracks or peeling away from the shank, which 
can reduce the specificity of the recording (Kozai et  al. 
2015; Prasad et  al. 2012). Micromotion of an implanted 
device in the spinal cord is more harmful than in the 
brain, likely due to relative size (Ersen et al. 2015).

Neuron degeneration and loss near the implant site 
has been extensively studied in the cortex due to the high 
failure rate of intracortical recording electrodes. Elec-
trode insertion, the tissue response, and micromotion 
contribute to neuronal loss surrounding an implanted 
electrode (Biran et  al. 2007, 2005; Jorfi et  al. 2015; 
Moxon et  al. 2009; Prasad et  al. 2012), with the largest 
loss of neurons occurring shortly after the implantation 
of the electrode array (Winslow et  al. 2010). Neuronal 
loss can continue for the duration of the implant due 
to local, chronic inflammation, inducing a focal neuro-
degenerative state (McConnell et  al. 2009). Explanted 
intracortical electrodes can be surrounded by densely 
packed layers of activated microglia (Szarowski et  al. 
2003; Turner et  al. 1999), with the density of microglia 
inversely correlated with the neuronal density surround-
ing the electrode (Biran et al. 2005). In both stimulating 
and recording electrodes, there is more gliosis and neu-
ronal loss near the electrode tip due to micromotion 
(Edell et al. 1992; Kozai et al. 2015; McCreery et al. 2021, 
2010). As the radial distance away from the tip increases, 
so does the neuronal density (McCreery et  al. 2010). 
There are also fewer and altered synapses adjacent to the 
glial scar (Schultz and Willey 1976). Reduced neuronal 
density near a microelectrode is detrimental to single 
unit recordings in particular, because neurons need to 
be within 130  µm of the recording site to be identified 

(Polikov et al. 2005). It has been suggested that neurons 
migrate away from the implant site (Collias and Manue-
lidis 1957; Liu et al. 1999); however, another study failed 
to find an increased neuronal density further away from 
the implant site, suggesting that neuronal loss, rather 
than migration occurs (Biran et al. 2005).

End game: clinical implications of device failure
Implanted neural interfaces are designed to treat neuro-
logical disorders. When these devices fail, either techno-
logically or biologically, there are clinical consequences. 
These clinical consequences can include the loss of thera-
peutic efficacy and return of symptoms or dysfunction, 
but can also include new clinical complications that are 
a direct result of the implanted device failure, including 
off-target effects, infection, and tissue damage. Complica-
tions, or adverse events, are reported to the United States 
Food and Drug Administration (FDA) and classified as 
either Serious Adverse Events (SAEs) and Adverse Events 
(AEs) (FDA 2024). However, the lines between SAEs and 
AEs are often blurry and inconsistently reported in litera-
ture and by hospitals (Barlas 2017; Gagliardi et al. 2018; 
Tilz et al. 2024). Medical device failures are documented 
in the Manufacturer and User Facility Device Experi-
ence (MAUDE) Database (Health  2024). However, this 
includes all medical devices, not just implanted neural 
interfaces. If device malfunction occurs repeatedly, it 
can lead to recalls by the FDA (FDA 2025a, 2025b, 2023, 
2019). Table 2 summarizes the reported rates of clinical 
complications related to the failure of implanted neural 
interfaces.

When a complication arises from failure of an 
implanted neural interface, it is important to understand 
how severe the complication is, so that the treating cli-
nicians can determine the most appropriate treatment. 
There is a need for a clear guide to aid clinical decision 
making according to the severity of the failure. In Table 3, 
we have created such a guide by adapting the Clavien-
Dindo grading system for surgical complications (Dindo 
et al. 2004). The examples provided were collected from 
the former sections, as well as from the troubleshooting 
algorithm developed by (Zbar 2014).

Long live: chronic testing to improve device 
longevity
Often, the cause and effect of failure modes of implanted 
neural interfaces cannot be delineated between techno-
logical and biological factors. Additionally, a combination 
of failure modes can occur simultaneously. Therefore, 
redundancy and improved manufacturing processes are 
necessary to ensure reliability of implanted neural inter-
faces for the lifetime of the device user. Reliability is 
determined via the characterization of the technological 
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and biological failure modes. This process typically and 
should entail benchtop testing, followed by acute and 
most importantly, chronic testing of implanted devices 

(Dalrymple 2021; Henderson et  al. 2006; Pena et  al. 
2017; Shepherd et  al. 2018). Computational modeling 
can also be used to predict and identify failure modes 

Table 2 Reported rates of clinical consequences of implanted neural interface device failure. References: (Branco et al. 2023; Chapman 
et al. 2024; da Cruz et al. 2016; Daschner et al. 2017; Deng et al. 2006; Eldabe et al. 2016; FDA 2023, 2020; Force and da Silva 2017; 
Garg and Wang 2023; Goudman et al. 2024; Hines et al. 2022; Hoffmann et al. 2023; Horan et al. 2020; Ilfeld et al. 2017; Kahlow and 
Olivecrona 2013; Lander et al. 2020; Meng et al. 2018; Mitchell et al. 2023; Moman et al. 2021; Morishita et al. 2017; Mostafa and El Fiky 
2024; Olson et al. 2023; Orlando and Cruz 2024; Pepper et al. 2013; Rizzo et al. 2020; Rolston et al. 2016; Rueb et al. 2020; Shibata et al. 
2015; Sivanesan et al. 2019; Spindler et al. 2023; Toffa et al. 2020; Triolo et al. 2018; Vanloon et al. 2025; White-Dzuro et al. 2016)

Name Complication(s) and Rate(s)

Deep brain stimulation (DBS) Hardware-related infections (4%); readjustment of lead position (2.7%); lead fracture (1.4%); lead migration 
(12.3%); pneunomia (2.3%); hematoma (1.4%); intracranial bleeding (6.1%); pulmonary embolism (0.6%); 
death (0.2–0.32%)

Electrocorticography (ECoG) Surgical site infection (4%); hematoma (1–7.3%); infection from subdural placement (2.4–15.6%); seizure 
(1–41%); deep vein thrombosis (2.3%); sepsis (< 1%); death (< 1%)

Depth electrodes Surgical site infection (2.4–14.9%)

Stentrode endovascular electrode array Hematoma at insertion site (1/4 participants)

Spinal cord stimulation (SCS) Lead migration (3.07–9.97%); lead explant (2.02%); implanted pulse generator explant (2.67%); infection 
(3.4–10%); hematoma (0.81%); device malfunction (27.1%); spinal cord injury (0.42%); death (0.47%)

Dorsal root ganglion stimulation (DRGS) Trial lead infection (1,03%); implant infection (4.8%); revision infection (3.85%); lead migration (0.7–9.1%); lead 
fracture (6%); lead migration (6%); lead defects (39%); revision (29%); fragments left following lead removal 
(12%); explant (12%); permanent nerve damage during replacement procedure (9.1%)

Cochlear implant Surgical site infection (1.4–3.2%); hematoma or seroma (1.3–2.6%); major infection and necrosis (2.3%); device 
fault (0.5%); electrode extrusion (2.6%); permanent facial palsy (0.09%)

Retinal prosthesis Revision surgery (3.4%); conjunctival erosion (6.2%); retinal detachment (6.7%); infection (16.7%)

Vagus nerve stimulation Surgical site infection (2.6–3.5%); hematoma (1.9%); lead fracture (3–11.9%); lead disconnection (0.2–2.5%); 
stimulator malfunction (1.4%); battery displacement (0.2%); persistent vocal cord palsy (0.7%); deep infection 
requiring explant (3.5%); explant due to implanted pulse generator dysfunction (4–16.8%)

Peripheral nerve stimulation Infection (0.1–0.7%); electrode failure (2–10%); lead fracture (6.25%)

Sacral stimulation Infection (1.6–6.6%); seroma or hematoma (3%); pocket revision due to infection (14.6%); lead wire breakage 
(7.5%); lead fragments left behind following breakage (6%); lead migration (2.1%); battery depletion requiring 
reoperation (1.7–39%); lead revision (13–18%); explant (4–24%)

Table 3 Grading system developed for the severity of clinical complications resulting from implanted neural interface failure, 
including examples. This was modified from the Clavien-Dindo grading system for surgical complications

Grade Description Examples

I Minor loss of efficacy or complication requiring no surgical or pharmacologi-
cal intervention

Reprogramming, warm compress for edema, imaging

II Complications requiring pharmacological intervention Antibiotics or steroids for infection or edema

 IIa Single treatment

 IIb Repeated treatment

III Complications requiring outpatient surgical intervention Draining a hematoma or debriding skin necrosis

IV Temporary loss of function or disability Rehabilitation for nerve compression

V Complications requiring inpatient surgical intervention Revision, removal, or replacement of part or all of device

 Va Intervention not under general anesthesia

 Vb Intervention under general anesthesia

VI Permanent loss of function or disability Ongoing rehabilitation for paralysis, treatment of seizures

VII Life-threatening complications requiring intensive care management Sepsis from infection

 VIIa Single organ dysfunction

 VIIb Multi-organ dysfunction

VIII Death related to the complication Sepsis from infection
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of implanted devices (Henderson et  al. 2006; Jorfi et  al. 
2015; Subbaroyan et al. 2005). With in vivo testing, it is 
important to have clinically-relevant animal models for 
testing novel implanted neural interface systems. It is 
equally important to use electrode and implant assem-
blies that closely resemble the form factor and materials 
used in the proposed implant.

Several testing methods can be used to minimize or 
eliminate failure modes, or, if not out of the woods, can 
be used to study the mechanisms of failure and monitor 
the implant (Fig.  8). Lead wires are prone to breakage; 
therefore, extensive benchtop fatigue testing is necessary 
prior to implantation. Fatigue testing is an accelerated 
process that entails repeatedly bending lead wires until 
lead breakage or cracks in the insulation occur (Harris 
et  al. 2016; Pena et  al. 2017; Fig.  8A). Neural interfaces 
that have been implanted in people, such as DBS (Jiang 
et al. 2015), SCS (Henderson et al. 2006), and LIFEs (Pena 
et  al. 2017) have reports characterizing their benchtop 
fatigue testing. The American Society for Testing Materi-
als (ASTM) International has a standardized protocol for 
fatigue testing (ASTM 2020).

Coatings on electrode surfaces are at risk of delami-
nating; therefore, their adhesion must be tested prior to 
active in  vitro or in  vivo studies. The adhesion-by-tape 
test (ASTM 2022) is a simple yet effective method for 
testing the adhesion of electrode coatings (ASTM 2022; 
Dalrymple et al. 2019; Green et al. 2012; Fig. 8A). Coating 
material loss can be quantified following inspection using 
scanning electron microscopy (SEM; Čvančara et  al. 
2020; Dalrymple et al. 2019; Green et al. 2012; Fig. 8A,C). 
SEM can also be used to visualize damage to insulation 
or electrode tips, such as cracking, peeling, corrosion, or 
breakage (Prasad et al. 2012).

Accelerated aging is a benchtop process whereby 
electrodes are housed (passive) and/or stimulated con-
tinuously (active) in a saline-like solution at an elevated 
temperature (body temperature or higher; Fig.  8A). 
Accelerated aging protocols mimic the physiological 
environment but on a faster timescale (ASTM 2021; 
Hukins et al. 2008). The saline-like solution can be com-
prised of saline, phosphate-buffered saline (PBS) (Noller 
et  al. 2019), artificial CSF (Vara and Collazos-Castro 
2019), contain proteins such as bovine serum albumin, 
or contain reactive chemicals such as hydrogen peroxide, 

which mimics reactive oxygen species (Street et al. 2018; 
Takmakov et al. 2015). Accelerated aging protocols have 
been applied to many types of implanted neural inter-
faces, both clinically available devices and prototypes 
with novel electrode materials or coatings, including 
but not limited to functional neuromuscular stimulation 
devices (Smith et al. 1987), intracortical electrodes (Pat-
rick et al. 2011; Street et al. 2018; Takmakov et al. 2015; 
Venkatraman et al. 2011), floating microelectrode arrays 
(Bredeson et  al. 2013), cochlear electrodes (Dalrymple 
et al. 2019), and retinal prostheses (Lemoine et al. 2020). 
Accelerated aging can also be used to test novel hermetic 
packaging technologies (Nagarkar et al. 2017). Following 
the accelerated aging protocol, the electrode surface is 
often imaged using SEM to inspect for corrosion of the 
electrode surface or delamination of coatings, the solu-
tion is examined using mass spectroscopy for particu-
lates of the electrode or coating material, the device is 
checked for open or short circuits, and/or the electrodes 
are tested using various electrochemical measures (Dal-
rymple et al. 2019).

Electrochemical measures describe the safety and 
effectiveness of an electrode to conduct and/or deliver 
charge at the electrode-tissue interface (Fig.  8A-C). 
Electrochemical measurements can be acquired bench-
top using three electrodes: the working, reference, and 
counter electrodes in a saline-like solution (Cisnal et al. 
2018; Cogan 2008; Dalrymple et  al. 2019) or in  vivo 
(Lempka et al. 2009; Shepherd et al. 2021). Charge stor-
age capacity (CSC) is the amount of charge that can be 
stored in reversible reactions, i.e. without exceeding the 
water window (Merrill et al. 2005). The CSC is measured 
using cyclic voltammetry, where the electrode potential 
between the working and counter electrode is slowly 
cycled between the water window limits (Cisnal et  al. 
2018; Cogan 2008). The CSC depends on the electrode 
geometric surface area, material, electrolyte composition, 
and waveform parameters. It is desirable to have a large 
CSC such that more charge can be injected safely into the 
tissue to excite neurons. The charge injection limit (CIL) 
is the maximum amount of charge that can be injected 
into the tissue in reversible reactions during a stimula-
tion pulse (Cisnal et al. 2018; Dalrymple 2021). The CIL 
is determined using voltage transients, where bipha-
sic, charge-balanced, cathodic first pulses are delivered 

Fig. 8 Overview of testing methods used to evaluate implanted neural interface systems. Benchtop methods include the adhesion 
test of the electrode material, accelerated aging of the implanted portion of the device, electrochemical measures such as CSC, CIL, EIS, 
and common-ground impedance, fatigue testing of lead wires, and SEM of the electrode surface. In vivo testing includes testing serum and CSF 
samples, electrochemical measures, and electrophysiology of evoked responses. Post-explant testing includes electrochemical measures 
on the explanted electrodes and SEM of the electrode surface. Post-mortem analysis includes trace analysis and histological examination of tissues

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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through the electrode at a constant pulse width and 
increasing current amplitudes (Lee et  al. 2016). Imped-
ance is typically measured using one oftwo methods: 
common ground impedance and electrochemical imped-
ance spectroscopy (EIS). Common ground impedance 
entails measuring the voltage resulting from a small cur-
rent stimulus and calculating the corresponding resist-
ance using Ohm’s law (Shepherd et al. 2021). For optimal 
recording performance and high electrode yield, it is best 
if the electrode impedance is in the 2 to 150 kΩ range 
(Chen et al. 2022; Fu and Rutishauser 2025; Prasad et al. 
2012); however, these values may vary for different appli-
cations. EIS produces a more comprehensive measure of 
impedance across a range of frequencies (Cogan 2008). 
EIS magnitude and phase values can be used to generate 
an equivalent circuit model, of which there are several 
types (Lempka et al. 2009; Lisdat and Schäfer 2008; Shep-
herd et al. 2021; Wei and Grill 2009). The components of 
the equivalent circuit model indicate both electrode and 
tissue behaviour.

Acute and/or chronic in  vivo testing in animal mod-
els should follow benchtop testing to ensure the 
implanted devices can survive a more realistic environ-
ment (Fig.  8B). Much of the time, chronic in  vivo test-
ing is performed over a period of months, but can be 
executed for years in larger animal models (Barrese et al. 
2013; Chestek et  al. 2011; Christensen et  al. 2014; Grill 
and Mortimer 2000; Jeong et  al. 2015; Kane et  al. 2013; 
Kozai et al. 2015; Lago et al. 2007; Nayagam et al. 2014; 
Opie et al. 2018; Oxley et al. 2016; Payne et al. 2018; Rod-
ríguez et  al. 2000; Sahasrabuddhe et  al. 2021; Shepherd 
et al. 2021; Stock et al. 1979). Longer durations of chronic 
in  vivo testing provide valuable insight into the device 
performance and tissue reaction to implants over a time-
frame that more closely matches the duration in human 
implementation. Furthermore, the tissue response after 
several months is expected to be stable, entering the 
device encapsulation stage described above. However, 
long-duration chronic in vivo testing is costly, and inves-
tigators must balance resource availability with the gain 
of information from longer duration implants.

The location, size of the implant, and electrode geom-
etry should scale to the animal model for the most 
accurate testing for the proposed clinical application. 
During and following the chronic implantation period, 
the implanted devices are characterized by how well they 
function and whether or not they maintained their physi-
cal integrity. For example, electrochemical measures can 
be used to track changes at the electrode-tissue interface 
over time (Abidian et  al. 2010; Dalrymple et  al. 2020b, 
2020a; Jeong et al. 2015; Kane et al. 2013; Opie et al. 2016; 
Shepherd et al. 2021). Electrode corrosion or metal disso-
lution causes pitting on the electrode surface, increasing 

the surface area (Prasad et al. 2012; Shepherd et al. 2021). 
This increase in surface area results in an increased CSC, 
and can also reduce the impedance (Dalrymple et  al. 
2020b, 2020a; Merrill et al. 2005; Shepherd et al. 2021).

Insulation damage can result in a decreased imped-
ance, due to an increased surface area of the conduc-
tive electrode (Prasad et  al. 2014). Daily fluctuations in 
impedance can occur, likely also influenced by the tissue 
response to the implant, transient bleeding, and edema 
(Groothuis et  al. 2014; Prasad et  al. 2012). During cur-
rent-controlled stimulation, a higher electrode imped-
ance demands more power from the pulse generator 
because an increased stimulation amplitude is required 
to excite the same neurons (Butson et  al. 2006). Con-
tinued increases in stimulation amplitude to maintain 
efficacy has been reported for DBS (Krack et  al. 2002; 
Yamamoto et al. 2004).

For devices that transfer power wirelessly through the 
skin, such as cochlear implants, power transmission is 
limited by the wireless components and safety standards. 
Therefore, an increased power demand due to high elec-
trode impedances may not be possible. While recording 
neural activity, the impedance can greatly impact the 
signal-to-noise ratio (Chen et  al. 2022; Chu et  al. 2012; 
Chung et al. 2015; Groothuis et al. 2014); a high imped-
ance (> 1.5 MΩ) reduces the yield of single units recorded 
(Prasad et al. 2014). Periodic electrochemical assessment 
can inform on the state of the electrode-tissue inter-
face and be used to explain changes in required stimu-
lation amplitude to be effective. Characterizing chronic 
implants in  vivo can reveal challenges that were not 
identified in benchtop or acute testing, especially those 
related to the tissue response or the delamination of elec-
trode coatings (Abidian et al. 2010; Čvančara et al. 2020; 
Dalrymple et al. 2020b, 2020b; Green et al. 2012). Some-
times, the results of the chronic in vivo testing require a 
change in design, and begin the testing again, to ensure 
optimal biocompatibility and longevity. Therefore, these 
chronic in  vivo studies must be performed to ensure 
that there are no surprises come time to translate these 
implants to clinical application.

Several electrophysiological measures can be used to 
monitor the implanted neural interface and how well it is 
interacting with neurons (Fig. 8B). In general, a decaying 
or loss of signal from recording neural interfaces can eas-
ily be measured over time, such as intramuscular EMG 
electrodes (DeMichele et  al. 2013), ECoG arrays (Baek 
et  al. 2014), or intraspinal electrodes (Greenspon et  al. 
2019). For stimulating electrodes, either the electrodes 
need to be connected to a recording device such that sin-
gle units or local field potentials can be recorded through 
the stimulating electrodes, or recording electrodes are 
placed elsewhere along the neuraxis to measure an 
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evoked response (McCreery et  al. 2004; Prasad et  al. 
2012). Examples of evoked responses include evoked 
auditory brainstem responses (EABRs) elicited by stimu-
lation through cochlear implants (Dalrymple et al. 2020a, 
2020b; Shepherd et al. 2020), or evoked compound action 
potentials (ECAPs), which can be evoked by stimulating 
the DRG, vagus nerve, spinal cord, and periphery, and 
recorded from the peripheral nerves, vagus nerve, or spi-
nal cord (Calvert et al. 2022; Dalrymple et al. 2021; Fisher 
et al. 2014; Payne et al. 2020; Shulgach et al. 2021; Ting 
et  al. 2024). Chronic animal studies should monitor the 
natural and electrically-evoked neural activity longitudi-
nally to ensure that the target neural population is being 
recorded/stimulated. In humans, patients may be able 
to report a response. For example, patients with a coch-
lear implant can report whether they can hear during 
stimulation, or retinal prosthesis users can report seeing 
phosphenes.

Blood serum and CSF samples can be extracted and 
analyzed throughout the duration of an implant to 
monitor the inflammatory response (Prasad et  al. 2012; 
Fig.  8B). For example, phosphorylated neurofilament 
heavy subunit (pNF-H) is a biomarker for axonal injury 
that can be detected in both blood and CSF in response 
to ongoing axonal damage (K. J. Anderson et  al. 2008a, 
b; Prasad et  al. 2012; Shaw et  al. 2005). Sustained and 
fluctuating elevated levels of pNF-H has been found fol-
lowing chronic implantation of intracortical electrodes 
in rats, indicating ongoing axonal damage (Prasad et  al. 
2012). Additionally, cytokine biomarkers that have been 
identified in CSF and serum samples in response to a spi-
nal cord injury, such as IL−6, IL-8, monocyte chemoat-
tractant protein (MCP)−1, tau, glial-expressed protein 
S100β, and glial fibrillary acidic protein (GFAP) (Kwon 
et al. 2010), may be useful to determine ongoing inflam-
mation in response to electrodes implanted in the spinal 
cord. At the conclusion of the implant testing duration, 
tissue surrounding the implant as well as organs respon-
sible for filtering toxins, such as the kidneys and liver, can 
be tested using trace analysis for metal or polymer par-
ticulates that may have originated from the electrodes 
(Shepherd et  al. 2021; Fig.  8C). Furthermore, the tissue 
surrounding the implant can be excised, sectioned, and 
examined histologically for the presence and activation 
of immune cells (Dalrymple et al. 2020a, 2020b; McCre-
ery et al. 2010; Nayagam et al. 2014; Schendel et al. 2014; 
Fig. 8C).

When neural interfaces are implanted into people, they 
can be monitored over the duration of the implant using 
the aforementioned methods, especially impedance or 
evoked response testing (Fisher et  al. 2009). Early feasi-
bility and first-in-human trials aim to assess the safety 
and efficacy of implanted neural interfaces (Ayton et  al. 

2014; Bergey et al. 2015; Čvančara et al. 2020; Hochberg 
et al. 2006; Kilgore et al. 2003; Mitchell et al. 2023). In the 
rare instances that implanted electrodes are explanted, 
the electrode surface and electrochemical behaviour can 
be characterized (Woeppel et  al. 2021; Fig.  8C). Other-
wise, investigating how the implanted neural interfaces 
interact with the tissue or inspecting the electrodes for 
corrosion is done post-mortem (Haberler et  al. 2000; 
Moss et al. 2004; Nadol et al. 2014; O’Malley et al. 2017; 
Szymanski et  al. 2021; Towle et  al. 2020). Post-mortem 
examination of tissue is extremely informative because it 
reveals the tissue response and electrode integrity after 
lifetime use of the implant (Fig. 8C).

Wildest dreams: the future of implanted neural 
interfaces
The therapeutic successes of many implanted neural 
interfaces have sparked a dynamic industry (Weber 2020) 
as well as many thematic funding opportunities, includ-
ing ElectRx, BG + , ReNet, N3, NESD, RAM, SUBNETS, 
TNT, and HAPTIX by the Defense Advanced Research 
Projects Agency (DARPA) and other major funding agen-
cies such as the National Institutes of Health (NIH) and 
Department of Defense (DoD) in the United States of 
America. With technological advances in nanoengineer-
ing, materials science, electromagnetism, and optoge-
netics, the future of implanted neural interfaces is bigger 
than the whole sky, but not untouchable.

Through chronic in  vivo experiments, failure modes 
of implanted neural interfaces can be identified, and 
innovative solutions can be applied to ameliorate them. 
As described, many different animal models have been 
used for preclinical testing of implanted neural inter-
faces. Mouse models for implanted neural interfaces 
open many doors of investigation. For example, to better 
understand the specific genes, enzymes, and cellular sig-
nalling pathways that may influence the performance of 
the neural interfaces, transgenic mouse models have been 
developed (Bedell et  al. 2018a, 2018b; Hermann et  al. 
2018b, 2018a; Kozai et al. 2014b). Furthermore, 2-photon 
microscopy can be used to perform live imaging of the 
mouse brain, particularly to study the live tissue response 
to intracortical electrodes (Kozai et  al. 2012b, 2016). 
Mouse models also enable the use of optogenetics, which 
can be used to locate specific cell types responsible for 
the recorded electrophysiological behaviour (Anikeeva 
et al. 2011; Park et al. 2017; Pashaie et al. 2014). Mouse 
models for studying implanted neural interfaces can be 
challenging, especially with the size limitations; how-
ever, a recent study showed that the strain on cortical tis-
sue from a microelectrode implant was no different in a 
mouse compared to a rat model (Mahajan et al. 2020).
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Surgical approaches and implantation techniques 
can be modified to invoke less trauma to the tissue. For 
example, delivering electrodes by injecting them through 
a syringe, such as with the Injectrode (Dalrymple et  al. 
2021; Trevathan et  al. 2019) or ultra-flexible mesh elec-
tronics (Fu et al. 2017; Hong et al. 2018; Liu et al. 2015), 
can both quicken the implant procedure time and reduce 
the trauma to surrounding tissues. Additionally, updated 
methods for securing lead wires can be improved to 
reduce lead migration, cracks in insulation, and infec-
tions, as has been demonstrated for DBS implants 
(White-Dzuro et  al. 2016). Improved materials, such 
as alginate hydrogel, have improved the seal in the dura 
mater following electrode implantation (Nunamaker and 
Kipke 2010). Intracortical and ECoG recordings require 
the removal of a portion of the skull to implant the elec-
trodes and depth electrodes require small holes to be 
drilled into the skull for insertion. An alternative record-
ing device, the Stentrode, is implanted endovascularly 
near the motor cortex, reducing both the surgical trauma 
and avoiding the tissue response from the brain (Oxley 
et al. 2020, 2016). However, one downside to techniques 
such as the Stentrode or ECoG are that the electrodes are 
at a greater distance from the neurons; therefore, they 
record local field potentials rather than individual neuron 
spikes. This may limit the specificity and degrees of free-
dom in the recordings of these techniques, but new sig-
nal processing methods and decoders have demonstrated 
the utility of these technologies (Forsyth et al. 2019; Luo 
et al. 2022; Volkova et al. 2019).

Wireless communication and power transfer between 
external and internal components or between the stimu-
lator and electrode can reduce the incidence of lead wire 
breakage. However, as reviewed above, wireless meth-
ods are not without limitations. Innovative methods 
to transfer data and/or power are being developed to 
mitigate issues related to heating, overlap requirements, 
transmission efficiency, and form factor (Robinson 
et  al. 2024). These technologies leverage RF and induc-
tive coupling, volume conduction, ultrasound, optics, 
and magnetoelectrics (Becerra-Fajardo et  al. 2024; Ben-
edict et al. 2022; Kim et al. 2023; Lee et al. 2021; Tawa-
kol et al. 2024), including neural dust for recording from 
peripheral nerves (Seo et al. 2016). Additionally, battery-
free technologies that harvest energy from the body are 
under development to facilitate distributed networks of 
implanted neural interfaces that do not require charging 
or battery replacement (reviewed in Nair et al. 2023).

Reducing the stiffness of hermetic packaging, lead 
wires, and electrodes has also been explored to reduce 
failure of implanted neural interfaces. Reducing the stiff-
ness of implanted devices to more closely match that of 
the surrounding tissue leads to a reduced inflammatory 

response (He et al. 2020; Jorfi et al. 2015; Patel and Lieber 
2019; Sohal et  al. 2016). Flexible hermetic packaging 
made from silicone, polydimethylsiloxane (PDMS), par-
ylene, polyimides, epoxies, polyurethanes, and liquid 
crystal polymers have been explored as an alternative 
to the conventional titanium packaging (Hassler et  al. 
2011; Jeong et al. 2015; Nagarkar et al. 2017; Rubehn et al. 
2009). However, many of these polymeric materials are 
porous to water vapour and degrade under physiological 
conditions (Hassler et al. 2011; Traeger 1977).

Low stiffness materials have also been used for elec-
trodes and arrays (Fekete and Pongrácz 2017). For 
example, electronic dura (e-dura) is an array capable of 
recording, electrical stimulation, and chemical injection, 
and has the same elasticity as the dura mater (Minev et al. 
2015). Other flexible arrays for SCS have been developed 
and tested in rats (Hogan et al. 2021) and flexible micro-
scale wires have been implanted in the brain of mice for 
recording (Yin et al. 2022). Flexible microelectrode arrays 
have been developed and tested in slug DRG (Sperry 
et al. 2018) as well as rodent brains (Harris et al. 2011b; 
Zhao et  al. 2022). Flexible depth electrodes have been 
implanted in the brains of small and large animal mod-
els (Lee et  al. 2024). Intrafascicular electrodes typically 
use stiff needles (Badia et al. 2011); more recent designs 
utilize microneedles embedded in soft silicone, result-
ing in stretchable and flexible intrafascicular electrodes 
for recording from peripheral nerves (Yan et  al. 2022). 
Novel polymeric materials can be used for electrodes on 
peripheral nerve cuffs, enabling them to stretch with the 
cuff (Cuttaz et  al. 2021). Arrays with multiple penetrat-
ing electrodes and flexible bases can reduce the relative 
motion of the electrodes (Khaled et  al. 2013). Flexible 
electronics using nanotechnologies have been used for 
detecting biomarkers (Farsinezhad et al. 2013; Yan et al. 
2021), intracellular recording and stimulation (Robinson 
et al. 2012), and intracortical recording (Zhao et al. 2019, 
2017).

Coatings on electrodes and shanks can be used to 
improve acceptance. Conductive hydrogel coatings 
applied to cochlear implants (Dalrymple et  al. 2020b), 
DBS electrodes (Hyakumura et al. 2021), and electrodes 
implanted in the auditory cortex (Kim et al. 2010) reduce 
the stiffness and impedance of the electrode. Hydrogel 
electrodes have also been used for flexible cuff electrodes 
around the cervical vagus nerve to allow for adjustments 
in diameter of the cuff (Horn et  al. 2021). Mechanical 
insertion damage can be reduced by using less stiff elec-
trode and shank materials; however, they need to be stiff 
enough to penetrate tissue but not too stiff that causes 
excessive damage. One solution to this problem is to use 
a stiff implant carrier that dissolves away, such as car-
boxymethyl cellulose (Gilgunn et  al. 2012; Kozai et  al. 
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2014a), resorbable polymers (Lewitus et al. 2011), or pol-
yethylene glycol (Kato et al. 2006), leaving behind flexible 
electrodes. Another option is to use a stiff implant car-
rier that is removed, leaving the softer electrode behind 
(Ferro et  al. 2018; Hanson et  al. 2019; Kozai and Kipke 
2009; Musk and Neuralink 2019; Williamson et al. 2015). 
Furthermore, temperature-sensitive and mechano-sensi-
tive polymers that soften at physiological temperatures 
(Capadona et al. 2008; Hess et al. 2013; Ware et al. 2014) 
can reduce the loss of neuronal density near the device 
(Harris et  al. 2011a) as well as reduce tissue deforma-
tion (Garcia-Sandoval et al. 2018). Similarly, shape mem-
ory polymers that soften in  vivo have been explored to 
reduce the stiffness of neural implants (Sharp et al. 2006; 
Ware et al. 2014).

Novel electrode and array geometries that are porous 
or latticed have been designed with the intention of inte-
grating the device with the tissue. For example, micro-
ECoG arrays constructed with a mesh-like substrate 
showed a reduced thickness of meningeal tissue growth 
between the array and the neural tissue (Schendel et al. 
2014). The holes in the mesh enabled revascularization of 
the tissue around the device. Several designs for intracor-
tical probes with porous structures have been developed 
to allow neural, connective, and vascular tissues to grow 
through the pores instead of encapsulating the device 
(Kang et  al. 2011; Seymour and Kipke 2007, 2006; Xie 
et  al. 2015). Similar neurovascular integration has been 
achieved with a porous peripheral neural interfaces as 
well (Veith et al. 2021). However, removal of these inte-
grated devices in the event of failure or infection may 
lead to excess tissue damage.

The acceptance of an implant by the surround tissue 
can be enhanced using coatings that are bioactive (Chap-
man et  al. 2020; Klopfleisch and Jung 2017; Rousche 
et  al. 2001). Bioactive refers to using coatings that con-
trol or calm down the intrinsic tissue response. Bioac-
tive coatings may contain peptides that promote neurite 
outgrowth (Green et al. 2009) and reduce microglia acti-
vation and migration (Azemi et  al. 2011; Sridar et  al. 
2017), reduce protein fouling (Golabchi et al. 2019; Kozai 
et  al. 2012a; Rao et  al. 2012), release anti-inflammatory 
agents (Gaire et  al. 2018; Kim and Martin 2006; Kruk-
iewicz et  al. 2019; Wadhwa et  al. 2006; Zhong and Bel-
lamkonda 2007, 2005), prevent glial scar formation (He 
et al. 2006; Massia et al. 2004; Tien et al. 2013), catalyze 
reactive oxygen species (Potter-Baker et  al. 2014), or 
release trophic factors to attenuate neural degeneration 
(Chikar et  al. 2012; Kato et  al. 2006). Neural interfaces 
can also host microfluidic systems for delivering fac-
tors that reduce the tissue response (Altuna et  al. 2013; 
Frey et  al. 2018; Takeuchi et  al. 2005). Not all implants 
need to remain implanted forever and always; temporary 

monitoring of intracranial pressure or evoked potentials 
could be realized through resorbable biosensors (Kang 
et al. 2016). Resorbable biosensors make use of materials 
such as poly(lactic-co-glycolic acid) (PLGA), nanoporous 
silicon, magnesium foils, and silicon dioxide that undergo 
hydrolysis during implantation, dissolving after approxi-
mately four to five weeks (Gentile et al. 2014).

Stimulation safety limits ensure that the electrode 
polarization does not exceed the water window. How-
ever, the recommended stimulation safety limits were 
derived from a study that chronically implanted platinum 
electrodes that were stimulated over a few hours into 
brain tissue (McCreery et  al. 1990). Because the central 
and peripheral nervous systems have different immune 
cells, hence different tissue responses to implanted 
devices, stimulation safety limits should be determined 
independently for each region of the body. For exam-
ple, high charge stimulation (exceeding the stimulation 
safety limits) of the cochlea did not result in neuronal 
death (Shepherd et  al. 2021) but did result in corrosion 
of platinum from the electrode, and platinum particu-
lates in the tissue capsule. Therefore, new materials need 
to be developed that can tolerate high charge stimulation 
such that stimulation limits can be identified for all inter-
face sites. Many new materials have been designed with 
the goal of reducing electrode impedance, which allows 
for more and smaller electrodes, and a wider stimulation 
range, which can improve selective activation of neu-
rons (Ludwig et al. 2011). For example, high surface area 
materials such as reduced graphene oxide, conductive 
hydrogel, and electrodeposited Platinum-Iridium have 
been explored for reducing the impedance of cochlear 
electrodes (Dalrymple et  al. 2020a, 2020b, 2019). Fur-
thermore, many different Poly(3,4-ethylenedioxythio-
phene) (PEDOT) formulations have been developed and 
tested for intracortical electrodes (Ganji et al. 2018; Lud-
wig et al. 2006; Seymour et al. 2011; Venkatraman et al. 
2011), intraspinal microstimulation (Vara and Collazos-
Castro 2019), and peripheral nerve cuffs (Lee et al. 2016).

The other side of the door: data storage 
and programming considerations
In addition to addressing the biological and hardware-
related failure modes, there are software and data-related 
concerns that are important to consider in the develop-
ment, optimization, and translation of implanted neu-
ral interfaces. Modern and future implanted neural 
interfaces seek to interface with more neurons, which 
demands more electrodes that are smaller and more 
selective in their recordings and/or activation. With this 
increased demand, the complexity of both processing 
recordings and delivering stimuli increases. More sophis-
ticated programming methods are needed, beyond the 
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simple input–output and closed-loop systems currently 
in use. Neurons can be more precisely activated dur-
ing stimulation by improving both spatial and temporal 
targeting. Spatial methods manipulate the strength and 
shape of the electric field to specify which neurons are 
activated. The electric field can be adjusted by changing 
the stimulation amplitude, pulse width, and pulse train 
frequency, as is common with modern devices. Electrode 
size, number, configuration (e.g., multipolar), and cur-
rent steering methods can shape the electric field to opti-
mally and precisely activate neurons (Dumm et al. 2014; 
Mishra et al. 2023; Tebcherani et al. 2024). Typical stimu-
lation methods activate neurons synchronously, which is 
not how neurons naturally fire. Neurons can be activated 
more closely to their natural firing patterns using biomi-
metic stimulation, which entails modulating both ampli-
tude and frequency of stimulation pulses (Formento et al. 
2020; Okorokova et al. 2018).

Strategies to control the timing or intensity of stimu-
lation determine when and how many neurons are acti-
vated. While current clinical devices have relatively 
simple control strategies that are often open-loop, 
closed-loop control is become more common. Closed-
loop methods use recorded signals (for example, ECAPs) 
to improve the effectiveness and efficiency of the stimu-
lation method (Brooker et  al. 2021; Kuo et  al. 2018). 
Control algorithms can be made more personalized 
and powerful with the use of machine learning (Dal-
rymple et  al. 2020c; Dalrymple and Mushahwar 2020; 
Desautels et  al. 2015). Informative and real-time signals 
are required to inform control strategies, which can be 
achieved through onboard sensing and processing of 
biosignals, and neural decoding methods.

With the gathering of large amounts of neural data, 
security concerns arise, particularly with how the data 
are transferred and stored (Jiang et al. 2023; Maiseli et al. 
2023). Cloud-based data storage and computing, as well 
as the use of AI-methods such as large language models 
to interpret data are growing in popularity and present 
concerns with personal health information. Methods for 
enhancing security and ensuring ethical data handling 
must continually adapt alongside rapid technological 
advancements. Moreover, policies governing the approval 
and regulation of implanted neural interfaces need con-
stant updating to align with these evolving developments.

Conclusions
Long story short, neural interfaces implanted through-
out the body have demonstrated great success in treating 
a growing variety of conditions. Despite these successes, 
the longevity of implanted neural interface systems are 
impeded by mechanical, technological, and biological 
barriers. Mechanical and electronic failures can occur 

in any of the components of the implanted system. The 
immune response to an implanted neural interface con-
sists of acute and chronic phases and differs between 
the central and peripheral nervous systems. Advances in 
material science and engineering are actively working to 
reduce the tissue response to implanted neural interfaces 
by reducing their size and stiffness as well as by using fac-
tors to reduce inflammation. Cycles of improving these 
devices and materials with chronic in  vivo testing is 
needed to thoroughly test new systems prior to clinical 
translation to ensure their long-term biocompatibility for 
human implantation.
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