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Abstract

Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improv-
ing the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact

with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted
neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades

and improving the health and quality of life of many patient populations. Despite these successes, implanted neural
interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised
of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted
neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants
in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsula-
tion of the device. This review describes the challenges faced by developers of neural interface systems, particularly
devices already in use in humans. The mechanical and technological failure modes of each component of an implant
system is described. The acute and chronic reactions to devices in the peripheral and central nervous system

and how they affect system performance are depicted. Further, physical challenges such as micro and macro move-
ments are reviewed. The clinical implications of device failures are summarized and a guide for determining the sever-
ity of complication was developed and provided. Common methods to diagnose and examine mechanical, tech-
nological, and biological failure modes at various stages of development and testing are outlined, with an emphasis
on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some

of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface
systems.
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Fig. 1 lllustration of neural interfaces that have been implanted in humans

devices are used clinically “off-label” to explore new treat-
ment applications, and several emerging neural interface
technologies are being developed and tested in commer-
cial and research investigational clinical trials (Fig. 2).
The major components of implanted neural interface sys-
tems are: (i) the pulse generator (for stimulation) and/or
data acquisition (DAQ) device (for recording), (ii) power
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and communication, (iii) packaging, (iv), lead wires and
interconnects, and (v) electrode(s) (example of a cochlear
implant system shown in Fig. 3).

Pulse generators deliver electrical current to activate
the target neurons. Recording DAQ devices typically
contain amplifiers and filters to increase the signal-
to-noise ratio of the recorded signal. Both stimulating
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and recording devices might also have components for
additional processing and control. While many clinical
devices use fully implantable pulse generators, includ-
ing SCS and DBS, other devices, such as many models of
cochlear implants, employ inductive coupling to trans-
fer power and control signals wirelessly across the skin.
Furthermore, SCS and DBS implantable pulse generators
sometimes require communication with external mod-
ules for data transfer or recharging.

Wireless power transmission, battery recharging, and
communication to implanted neural interfaces typically
uses inductive radio frequency (RF) or near-field coils on
either side of tissue (for example, skin (Zeng et al. 2008)
or dura mater (Powell et al. 2017)). The internal and
external RF coils must be coupled by overlapping physi-
cally as much as possible with a small thickness of tissue
in between; this may be difficult in some anatomical loca-
tions such as the skull or back (Troyk and Rush 2009).
The more electrodes in a neural interface the higher the
power and data rate transmission requirements, increas-
ing the bandwidth and power consumption (Nair et al.
2023). Data and power transmission are limited due to
safety restrictions: the power density in the body must
be <80 mW/cm? to avoid tissue damage from heating
(Seese et al. 1998).

Implanted electronics are packaged, typically in rigid
Titanium housing (Sidambe 2014), which acts as a bio-
compatible hermetic seal. Hermetic seals keep the
enclosed electronics safe and sound from the moisture
and ions in the tissue (Merrill 2014). Wires connect the
internal components to external components such as
electrode leads via a feedthrough assembly that often
consists of a ceramic or fused silica insulator (Nagarkar
et al. 2017).

Lead wires connect the electrodes to the pulse gen-
erator and/or DAQ unit. They are insulated, often with

(See figure on next page.)
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silicone, polyimide, parylene, or other flexible inert poly-
mer materials (Barrese et al. 2013; Kuo et al. 2013).

Electrodes are the conductive materials that inter-
face with neurons. They come in many forms including
rings, pads, and shanks and can be penetrating or non-
penetrating into the neural tissue (Fig. 4). Electrodes can
vary greatly in size, depending on the neural target and
electrode density, although electrodes on clinically avail-
able leads are more similar to each other. Some electrode
designs, such as those for intraspinal microstimulation
or longitudinal intrafascicular electrodes (LIFEs), use
a continuous material for the lead wire and electrode,
where the electrode is simply the de-insulated portion
of the lead (Bamford et al. 2017; Rijnbeek et al. 2018).
Depth electrodes are similar in design to many clinically-
available implanted electrodes; however, they come in a
hybrid version where microwires splay from the tip of the
array to record from single neurons (Fu and Rutishauser
2025). Most clinical electrodes are comprised of plati-
num or platinum-iridium alloys (Cogan 2008; Ford 2010;
Stover and Lenarz 2011). Pad-type electrodes, including
those used for transverse intrafascicular multichannel
electrodes (TIMEs) and ECoG, use sputtering, etching,
stamping, or welding manufacturing techniques (Bore-
tius et al. 2010; Konerding et al. 2018). Many other elec-
trodes, such as cylindrical electrodes or those used for
intracortical interfaces, require metal bonding or weld-
ing (Barrese et al. 2013). Coatings on the electrodes are
sometimes used to increase the conductivity; commonly,
iridium oxide is used (Woeppel et al. 2021).

Many implanted neural interfaces remain effective in
humans for years to decades (Table 1). Despite the great
successes of implanted neural interface systems, each of
the aforementioned components is a potential source
of failure. Furthermore, each application has specific
challenges, such as surgical access, safe implantation,

Fig. 2 Examples of implantable neural interfaces that have been implanted in humans. Some of these technologies have market approval

for clinical use, some are used clinically off-label, while many others are under investigation in academia and in industry and are limited to clinical
trials. References: Deep brain stimulation: (Drobisz and Damborskd, 2019; Kalia et al. 2013; Kogan et al. 2019; Li and Cook 2018; Rapinesi et al. 2019;
Wang et al. 2018); Electrocorticography: (Berger and Ojemann 1992; Leuthardt et al. 2004); Depth electrodes: (Krusienski and Shih 2011; Lehongre
etal. 2022); Intracortical electrode array: (Ajiboye et al. 2017; Barry et al. 2023; Collinger et al. 2013; Deo et al. 2024; Drew 2024; Flesher et al. 2021;
Hosman et al. 2023; Rastogi et al. 2021; Willett et al. 2023, 2021); Endovascular electrode array: (Mitchell et al. 2023; Oxley et al. 2020); Epidural spinal
cord stimulation (Angeli et al. 2018; Barolat et al. 1988; Bose et al. 2025, 2024; Capogrosso et al. 2024; Carhart et al. 2004; Chandrasekaran et al. 2020;
Darrow et al. 2019; Dekopov et al. 2015; Gill et al. 2018; Goodwin et al. 2023; Harkema et al. 2018; Iversen et al. 2024; Nanivadekar et al. 2023; Pinter
et al. 2000; Powell et al. 2022; Raslan et al. 2007; Richardson and McLone 1978; Shealy et al. 1967; Singh et al. 2023; Squair et al. 2021; Tator et al. 2012;
Wagner et al. 2018); Cochlear implant: (Shepherd et al. 2013; Zeng et al. 2008); Retinal prosthesis: (Ayton et al. 2014; Christie et al. 2022a; Gregori et al.
2016); Vagus nerve stimulation (Austelle et al. 2022; Dawson et al. 2021; De Ferrari et al. 2011; Dibué-Adjei et al. 2019; Koopman et al. 2016; Kosel
etal. 2011; LivaNova 2023; Rush et al. 2005; Sinniger et al. 2020); Dorsal root ganglion stimulation: (Deer et al. 2019; Liem et al. 2013; Sverrisdottir

et al. 2020); Peripheral nerve stimulation: (Charkhkar et al. 2018; Gan et al. 2012; George et al. 2019; Goree et al. 2024; Raspopovic et al. 2014; Tan

et al. 2014); Functional electrical stimulation: (Chaplin 1996; Hardin et al. 2007; Kobetic et al. 1999; Makowski et al. 2021; Peckham et al. 2001);
Intramuscular electromyography: (Hart et al. 2011; Heald et al. 2019; Page et al. 2018); Intraspinal microstimulation: (Nashold et al. 1981, 1972); Sacral
nerve stimulation (Hull et al. 2013; Sukhu et al. 2016; Tanagho et al. 1989)
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Fig. 3 Cochlear implant, demonstrating the variety of components of implanted neural interfaces. The magnets connect the external (left)

and internal (right) units across the skin. The microphone on the external unit records sound, the sound processor converts the sound

recordings to a digital signal with stimulation commands, the stimulation commands and power from the battery are sent from the external

to the internal transceiver, the stimulation commands are converted into a stimulation output by the pulse generator, the lead wires carry

the current to the electrodes, which generate an electric field that activates auditory neurons that lie outside the cochlea. Recording of impedance
at the electrode-tissue interface can also occur, where the DAQ records the electrode impedance with reference to the ground electrode,

and transmits these data to a different external transceiver to transfer the data to a computer for viewing by clinical team members

movement of local tissues, and electrochemical reac-
tions at the electrode-tissue interface. The effectiveness
and reliability of neural interfaces are limited by these
technological and biological challenges that can impede
translation and years-long use of the devices in humans.
In the following sections, we will review several of these
barriers and how they affect device longevity, with a
focus on devices that have been implanted in humans.
We will then highlight failure modes of devices dur-
ing chronic in vivo implantation with specific examples
reported from clinical use or clinical trials. We will also
review failure modes associated with the development of
novel implantable devices. With each failure mode, solu-
tions arise to resolve the issues. We conclude with novel
neural interfacing technologies and how they may be able
to mitigate some of the issues experienced by traditional
neural interface systems during long-term implantation.

(See figure on next page.)

I knew you were trouble

There are many reasons for the reduced effectiveness
or even failure of implanted neural interfaces, including
technological, mechanical, and biological barriers (the
latter literally forms a barrier). Assuming the manufac-
turing process was consistent and of high quality and the
surgical implant was free from iatrogenic damage to the
device or recipient (see Barrese et al. 2013 for examples),
there are still many points of failure for implanted neural
interfaces. Characterization of failure modes for the dif-
ferent types of neural interfaces varies. Brain-computer
interfaces (BClIs) using intracortical electrodes often have
a reduced ability to record from neurons over time, lead-
ing many researchers to investigate why these interfaces
have a limited lifetime (Barrese et al. 2013; Chestek et al.
2011; Colachis et al. 2021; Kozai et al. 2012b; Prasad et al.
2014). However, all neural interfaces pose challenges with
long-term communication with the nervous system.

Fig. 4 Types and dimensions of different types of implanted neural interface electrodes in humans. A Penetrating electrodes, B Non-penetrating
electrodes. References: UEA: (Blackrock Neurotech 2023a; Campbell et al. 1991); USEA: (Blackrock Neurotech 2023b); ISMS: (Bamford et al. 2017;
Dalrymple et al. 2018; Nashold et al. 1972); LIFE: (Malagodi et al. 1989; Rijnbeek et al. 2018); TIME: (Boretius et al. 2010); DBS: (Butson and McIntyre

2006; Medtronic 2022); Depth electrodes: (Fu and Rutishauser 2025); ECoG: (Dubey and Ray 2019); Retinal: (Ayton et al. 2014); Stentrode: (John et al.
2019); Vagus: (Mehta et al. 2018; Suminski et al. 2023); PNS cuff: (Fisher et al. 2009); Cochlear: (Dalrymple et al. 2019; Nguyen et al. 2013); SCS linear:
(Boston Scientific, 2017; Medtronic 2017); SCS paddle: (Medtronic 2017); FINE: (Tyler and Durand 2002); Sacral: (Markland et al. 1972; Rijkhoff et al.
1997, 1994); DRGS: (Al-Kaisy et al. 2019)
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Table 1 Reports of implanted device duration in humans
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Name

Duration Human Implants

Deep brain stimulation (DBS)
Electrocorticography (ECoG)
Depth electrodes
Intracortical electrodes

Stentrode endovascular electrode array
Spinal cord stimulation (SCS)

Intraspinal microstimulation (ISMS)

Dorsal root ganglion stimulation (DRGS)
Cochlear implant

Retinal prosthesis

Vagus nerve stimulation

Peripheral nerve stimulation (penetrating)
Peripheral nerve stimulation (cuff)
Functional electrical stimulation

Sacral stimulation

Years to decades (Haberler et al. 2000; Moss et al. 2004)
Months to years (Nurse et al. 2018)
Weeks (Lehongre et al. 2022)

Years to decades (Hughes et al. 2021; Sponheim et al. 2021; Szymanski et al.
2021; Towle et al. 2020; Woeppel et al. 2021)

Years (Mitchell et al. 2023)

Years (Cameron 2004; Costandi et al. 2020)

> 10 years (Nashold et al. 1981)

Years (Deer et al. 2020; Morgalla et al. 2018)

Years to decades (Kim et al. 2020; Nadol et al. 2014; O'Malley et al. 2017)
Months to Years (Christie et al. 2022b; Daschner et al. 2017; Mugit et al. 2019)
Years to decades (Dibué-Adjei et al. 2019; Siddiqui et al. 2010)

Years (Cvancara et al. 2023; George et al. 2020)

Years (Christie et al. 2017; Fisher et al. 2009)

Years (Kobetic et al. 1999; Triolo et al. 2018, 2012)

> 5 years (Hull et al. 2013; Siegel et al. 2018)

Delicate electronics

Implanted pulse generators and DAQs typically consist
of a battery and electronic components. Fully implant-
able stimulators and recording DAQs allow the omission
of transcutaneous wires, which can be a source of infec-
tion and fistula formation (DeMichele et al. 2014; Weir
et al. 2009). However, this means that a revision surgery
is required to replace the battery or unit for devices that
do not have rechargeable batteries, or rechargeable bat-
teries that eventually lose the ability to recharge. A recent
study found that patients receiving DBS prefer fixed-life
batteries compared to rechargeable because not having
to recharge batteries impacts their lifestyle less (Khaleeq
et al. 2019); however, this patient population is typi-
cally older and may not require revision surgery in their
remaining lifetime. Another important factor to consider
is that the risk of infection is higher for impulse generator
replacement than the initial implant procedure (Pepper
et al. 2013). Therefore, it is imperative that the electronic
components are reliable and the battery lasts as long as
possible.

Complex systems that require onboard control systems
or signal processing will require more power, demand-
ing more from the battery or may require a larger battery.
Larger batteries will require larger housing, limiting the
placement of the housing and possibly requiring longer
lead wires between the housing and the electrodes. Large
pulse generators and DAQ housing can also increase
the risk of developing dermatitis or pressure sores that
degrade the tissue surrounding the housing implant
(Choi et al. 2021; Dujari and Gold 2019; Hamada et al.
2006). Severe pressure sores and wound complications

such as hematoma, seroma, biofilm formation, skin ero-
sion, and dehiscence occur in 1 — 27% of patients and can
result in loss of skin over the pulse generator and even
the need for explantation (Falowski et al. 2019; Hanna
et al. 2024; Prabhala et al. 2023; Spindler et al. 2023; Xiao
et al. 2024). Form factor and stiffness of the housing likely
affect wound healing and the incidence of pressure sores;
however, these factors are not reported, likely because
the housing is identical to non-neural implants, including
pacemakers (Clingan et al. 2020).

Notably, the largest part of the power budget is for
wireless communication. Heating from data and power
transmission can occur from both the RF coils and the
implanted circuitry (Troyk and Rush 2009). Wireless
transmission is also complicated by the desire to reduce
the size of the implanted coil, as many designs seek to
be compact and completely wireless, such as the floating
microelectrode array for intracortical visual prostheses
(Troyk et al. 2005) and peripheral nerves (Bredeson et al.
2015). These floating arrays have all electrodes, electron-
ics, and RF coils onboard a single device. To minimize
the implant fingerprint means using a small diameter
(on the order of mm or smaller) implanted RF coil. The
reduced size of the internal RF coil reduces the coupling
of the coils, which then demands a higher intensity mag-
netic field and increases the power requirements (Nair
et al. 2023; Troyk and Hu 2013). Power consumption
needs to be considered for both external and implanted
pulse generators and DAQs, as high power consumption
reduces battery life and necessitates more frequent bat-
tery recharging or replacement.
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Maintaining a hermetic seal with high-density
feedthroughs is still a challenge facing implanted elec-
tronics. Hermetic seal failure can lead to a host of prob-
lems, including damage to electronic components,
corrosion, short circuits, open circuits, current leak-
age, damage to or change in properties of wireless coil
wires, and loss of amplifier sensitivity (Breach et al. 2010;
DeMichele et al. 2013; Merrill 2014).

Lead wire damage can occur at implant, during the
implant period, or upon removal. Many designs allow
for bundling or coiling to provide strain relief, which is
important for preventing dislodgement of the implants
(Dadd et al. 2011; Greenberg et al. 2002; Marsolais and
Kobetic 1986). However, lead wires are susceptible to
mechanical fatigue from frequent bending, especially
when the lead wires run through regions of the body
subject to movement, such as the limbs (Pena et al. 2017;
Phillips et al. 2004), the eyes (Ayton et al. 2014), the
supraclavicular region (Mohit et al. 2004), and even the
spinal cord (Toossi et al. 2017). Lead wire fractures are
common in people with dystonic movement disorders
(Yianni et al. 2004). Lead wire damage can induce cracks
in the insulation, resulting in electrical leakage (Bredeson
et al. 2013; Lyons et al. 2004; Prasad et al. 2014). Damage
to lead insulation not only reduces the effectiveness of
the device due to less current reaching the target tissue,
but also poses a safety risk through off-target stimulation
(Pena et al. 2017). Deinsulation of the lead wire can also
be an issue, especially for shank electrodes (Prasad et al.
2014, 2012). Peeling of the insulation away from the tip
of the electrode during insertion can increase mechani-
cal damage to the tissue. Deinsulation also increases the
surface area of the electrode, which can reduce specific-
ity and change the expected electrochemical behaviour
of the electrode. Lead wires are also susceptible to break-
age, which results in an open circuit and could lead to
device failure. Additionally, lead wire breakage can result
in fragments remaining inside the body, as reported fol-
lowing the removal of sacral stimulation leads (Rueb et al.
2020).

Pad electrodes are at risk of delamination or loss of
bonding from the carrier (Cvanéara et al. 2020). Delami-
nation can occur when the bond between the pad elec-
trode has poor adhesion with the substrate or when
liquid leaches in between the pad electrode and substrate
(Dalrymple et al. 2019; Green et al. 2012; Prasad et al.
2014). Many electrodes, such as ring electrodes, some
pad electrodes, or electrodes used for intracortical inter-
faces, require metal bonding or welding (Barrese et al.
2013). This junction is a potential source for discontinu-
ity and may result in conduction failure due to an open
circuit or result in current leakage. Furthermore, manu-
facturing differences have been identified as a source of
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failure for intracortical electrode arrays (Prasad et al.
2012). Deformities in the tips of the electrodes from laser
cutting have occurred, as well as differences in the extent
of the deinsulation of the wires, even in arrays manufac-
tured in the same batch. These manufacturing defects
led to insulation cracks and increased tissue response.
Intracortical electrode arrays are quite brittle, especially
those made of silicon or ceramic, and these electrodes
must be handled with care during implantation (Barrese
et al. 2013; Ward et al. 2009). Reducing the size of elec-
trodes can increase specificity and reduce the implant
profile in the tissue; however, smaller electrodes are more
difficult to handle and are often extremely fragile. Addi-
tional challenges with small and high density electrodes
are increased power and communication requirements
(Troyk and Rush 2009), cross-talk, increased impedance
(Nelson et al. 2017), and increased charge density during
stimulation. Increased charge density can lead to focal
tissue damage (discussed more below).

Electrode geometry influences the charge density dur-
ing electrical stimulation. Electrodes with irregular
geometries that are not spherical will have a non-uniform
charge density (Bruckenstein and Miller 1970; Harnack
et al. 2004). For example, electrode pads will accumu-
late charge on the edges (Wiley and Webster 1982), and
penetrating electrodes will accumulate charge at the tip
(McCreery et al. 2010). When charge is injected into the
tissue through an electrode, the reactions at the elec-
trode-tissue interface can be described as reversible or
irreversible. Irreversible reactions lead to the electrolysis
of water; the cathodic and anodic potentials that cause
the electrolysis of water are known as the water window
(Cogan 2008). Water hydrolysis results in the formation
of hydrogen and oxygen gases, a pH change at the inter-
face from hydroxyl ions, the formation of reactive oxida-
tion species, and electrode dissolution and/or corrosion
(Cogan 2008; Merrill et al. 2005; Shepherd et al. 2021).
These reactions may lead to electrode failure, tissue reac-
tivity, and necrosis. Using charge-balanced waveforms
that are limited in potential according to the water win-
dow can help minimize irreversible reactions (Brummer
and Turner 1977). However, focal areas of charge accu-
mulation as a result of electrode geometry can lead to
local irreversible reactions between the electrode and
tissue. Furthermore, at areas of high charge density, local
corrosion or tissue damage may occur (McCreery et al.
1990; Shepherd et al. 2021; Wiley and Webster 1982).
Electrode corrosion is worse in the presence of reactive
oxygen species (Patrick et al. 2011). Electrode corrosion
can result in the dispersion of metal particulates into the
surrounding tissue (Dymond et al. 1970; Patrick et al.
2011; Shepherd et al. 2021, 2020, 2019). Corrosion is not
limited to stimulating electrodes. Recording electrodes
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can undergo corrosion due to material degradation by
the foreign body tissue response (described below; Mer-
rill 2010; Prasad et al. 2012). The presence and rate of
corrosion is influenced by both the tissue environment
and material. For example, Tungsten and stainless steel
electrodes are more likely to corrode than Platinum-
Iridium or Titanium electrodes (Cogan 2008; McCarthy
et al. 2011; Patrick et al. 2011; Prasad et al. 2014, 2012).
Platinum compounds, Tungsten ions, and Silver can
all be cytotoxic, limiting the lifetime of the electrodes
(Dymond et al. 1970; Patrick et al. 2011; Shepherd et al.
2021). However, Platinum is able to convert oxidative
species to water, rendering the oxidative species inert and
less dangerous (Patrick et al. 2011).

A treacherous environment

Any foreign material implanted in the body, includ-
ing biocompatible materials, will evoke a foreign body
response, which can reduce the efficacy of implanted
neural interfaces. Additionally, with any surgical proce-
dure, there is always a risk of infection. Infections follow-
ing device implantation can result in biofilms forming on
the implant, making clinical treatment difficult and could
require device removal in addition to permanent tissue
damage. The foreign body response, or tissue response,
is the immune system’s rejection of a foreign body. The
tissue response is also influenced by the extent of the
trauma from insertion; less invasive, smaller devices
will evoke a smaller tissue response. The failure of intra-
cortical electrodes to record from single neurons long-
term has been largely attributed to the tissue response
of the brain (Moxon et al. 2009). The tissue response to
implants in the central and peripheral nervous systems
involve different immune cells and can be divided grossly
into acute and chronic phases. The acute phase can also
be separated into acute (within 24 h) and sub-acute
phases (within a few days).

Central nervous system tissue response

The central nervous system (CNS) includes the brain,
cerebellum, brainstem, and spinal cord. The CNS is
contained within the blood-brain barrier (BBB), which
separates the CNS from the vascular system. The BBB
is composed and maintained by the neurovascular unit,
which is comprised of endothelial cells (bound by tight
junctions), pericytes, microglia, astrocytes, and neurons
(Bennett et al. 2019; Hawkins and Davis 2005) (Fig. 5).
The neurovascular unit provides a structural barrier and
metabolic support to the CNS. Neural interface devices
that target the CNS compromise the BBB during the
implant procedure (Moxon et al. 2009). These include
electrodes for DBS, intracortical recording and stimula-
tion, and intraspinal microstimulation. Initial electrode
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Fig. 5 Cross-section of a blood vessel in the central nervous system,
illustrating the neurovascular unit. The neurovascular unit maintains
the blood-brain barrier and is comprised of endothelial cells,
pericytes, microglia, astrocytes, and neurons

insertion causes mechanical damage to neurons, myelin,
and vasculature (Jorfi et al. 2015; Mirkiani et al. 2024).
This disruption of the BBB and vasculature causes sys-
temic immune cells such as macrophages to infiltrate the
implant site (Fig. 6A). Macrophages can remain at the
implant site chronically (McConnell et al. 2009). Factors
released by immune cells can oxidize electrode surfaces
and even create cracks in lead insulation (J. M. Anderson
et al. 2008a, b; Kao et al. 1994). Red blood cells also enter
the implant site, increasing iron levels in the neural tis-
sue (Wang 2010). Hemolysis after bleeding releases more
iron into the implant site. Iron is dangerous in neural tis-
sue because it causes Fenton reactions (Goldstein et al.
2003), which lead to excitotoxicity (Regan and Panter
1996), as well as the formation of reactive oxygen species
that cause oxidative stress and neuronal degeneration,
injury, and death (Goldstein et al. 2003; Regan and Panter
1996; Ward et al. 2014).

In the sub-acute phase of the reaction to implants in
the CNS, resident microglia become activated (Fig. 6B);
they transition from a dormant surveyor cell to a phago-
cytic cell, cleaning cellular debris and producing pro-
teins for iron storage (Dheen et al. 2007; McCarthy et al.
2018; Polikov et al. 2005). The activated microglia release
pro-inflammatory factors such as reactive oxygen spe-
cies, nitric oxide, and reactive nitrogen species, which
contribute further to localized neural degeneration and
death (Biran et al. 2005; Block et al. 2007), additional
damage the BBB (Bennett et al. 2018), and degrade elec-
trode materials (Takmakov et al. 2015). The pro-inflam-
matory factors released by the activated microglia lead
to the migration and activation of even more microglia
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Fig. 6 Acute, sub-acute, and chronic tissue response to implanted neural interfaces in the central nervous system
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from the surrounding parenchyma (Hermann and Capa-
dona 2018). Activated microglia typically stay within a
20-35 pm thick perimeter around the electrode in both
brain and spinal cord implants (Ersen et al. 2015; McCo-
nnell et al. 2009), leading to an increased impedance
and reduced efficacy of the implant. A leaky BBB allows
further influx of macrophages from the circulatory sys-
tem to infiltrate the implant site (Ravikumar et al. 2014).
Macrophages are activated and release or initiate the
synthesis of inflammatory factors and mediators such
as reactive oxygen species, proteases, tumour necro-
sis factor (TNF)-a, interleukin (IL)-1-p, enzymes, acids,
and nitric oxide in an attempt to and seek to destroy the
implant (Bennett et al. 2019; Tresco and Winslow 2011).
These factors released by macrophages are also neuro-
toxic and can induce tissue damage in the region sur-
rounding the implant. Activated macrophages have been
observed at the implant site into the chronic stage of the
tissue response. When electrodes are implanted near a
major blood vessel without damaging it, astrocytes and
microglia activity is still increased (Kozai et al. 2012b).
The implantation of microelectrodes leads to an up-reg-
ulation of chondroitin sulfate proteoglycans (CSPGs) at
the electrode-tissue interface (Zhong and Bellamkonda
2007). CSPGs are a component of the extracellular matrix
and inhibit neural regeneration in the tissue adjacent
to the implant site (Hynds and Snow 1999; Kuffler et al.
2009), contributing to an increased impedance of the
electrode-tissue interface, which reduces the signal-to-
noise ratio for recording electrodes and limits the electric
field for stimulating electrodes.

In the chronic phase of the tissue response to an
implant in the CNS, which occurs within days to weeks,
microglia are less prevalent and astrocytes become
hypertrophic and migrate to the implant site (Hermann
and Capadona 2018) (Fig. 6C). Astrocytes isolate the
implant from the surrounding tissue by forming a fibrous
capsule around the electrode, known as the glial scar
(Biran et al. 2005; Turner et al. 1999). Electrode encap-
sulation is further supported by fibroblasts from the
meninges, specifically the pia mater (Barrese et al. 2013).
Gliosis also occurs along the electrode tract, but is simi-
lar for stimulating and non-stimulating electrodes in the
spinal cord (Bamford et al. 2010). Electrical stimulation
has been shown to dampen the tissue response to DBS
electrodes (Lempka et al. 2009), but is dependent on
stimulation parameters. The collective effects of the glial
scar reduce the number of neurons via neuronal degen-
eration, ultimately reducing the signal-to-noise ratio
and electric field strength.

Non-penetrating neural interfaces in the CNS also
evoke a tissue response. Micro-ECoG arrays implanted
on rat cortices become encapsulated with fibrous scar
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tissue from the meninges (Schendel et al. 2014). Retinal
implants typically do not compromise the blood-retinal
barrier and therefore are not susceptible to the negative
effects of the systemic immune system and iron. How-
ever, retinal microglia respond to injury within min-
utes (Eter et al. 2008; Lee et al. 2008) and migrate to the
implant upon contact (Opie et al. 2012); the rest of the
typical CNS tissue response follows. Electrical stimula-
tion on the cortical surface can evoke a tissue response,
where the extent of fibrosis is proportional to the charge
density (Brown et al. 1977; Dauth et al. 1977). Conversely,
recording electrodes implanted endovascularly in the
brain become integrated into the blood vessel wall over
time, avoiding the tissue response of the CNS (Opie et al.
2017; Oxley et al. 2016).

Peripheral nervous system tissue response

The peripheral nervous system (PNS) includes the spinal
and cranial nerves. The auditory nerve becomes a periph-
eral nerve as it enters the cochlea; cochlear implants
activate auditory neurons via an electric field surround-
ing the electrodes and transmitted in the perilymph (i.e.,
cochlear implants do not directly interface with neurons).
The tissue response in the cochlea also involves the same
cells (macrophages) and reactions as the PNS (Foggia
et al. 2019). The exception is a severe and abnormal tis-
sue response to a cochlear implant: neo-ossification (Dal-
rymple 2021; Foggia et al. 2019; Nadol et al. 2014, 2001).
Neo-ossification, or new bone growth, occurs in the
cochlea due to severe insertion trauma (Bas et al. 2015).
Neo-ossification can exacerbate the loss of residual hear-
ing and reduce the efficacy of cochlear implants by form-
ing a resistive barrier between the electrodes and the
auditory neurons (Foggia et al. 2019).

Implanting a device in the periphery causes trauma
and vasculature damage. Excessive bleeding can lead to
a hematoma, which can increase the risk of infection.
The initial response to a foreign body in the periphery is
the adsorption of blood plasma proteins, including albu-
min, fibrinogen, fibronectin, kininogen, complement,
y-globulin, and vitronectin, onto the surface of the
implant (J. M. Anderson et al. 2008a, b; Klopfleisch and
Jung 2017). These proteins form a provisional matrix
around the implant, which then develops into a thrombus
and eventually into a fibrin clot.

The acute inflammatory response to implanted devices
includes the infiltration of neutrophils (J. M. Ander-
son et al. 2008a, b; Bas et al. 2015; Fig. 7A). Neutrophils
phagocytose debris and bacteria and enter the implant
site within a few hours (Kastellorizios et al. 2015). In
the sub-acute phase, mast cells enter the implant site
and degranulate, releasing histamine and inflammatory
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Fig. 7 Acute, sub-acute, and chronic tissue response to implanted neural interfaces in the peripheral nervous system
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cytokines (Tang et al. 1998; Fig. 7B). Histamine is also
important for the recruitment of phagocytes such as neu-
trophils and macrophages to the implant site.

The presence of macrophages and lymphocytes mark
the chronic phase of the tissue response (Fig. 7C). Mac-
rophages and lymphocytes surround and adhere to the
implant (Foggia et al. 2019; Klopfleisch and Jung 2017).
Macrophages release several chemoattractants that
further recruit more macrophages to the implant site
(Broughton et al. 2006). As in the CNS tissue response,
macrophages release factors and mediators that attempt
degrade the implant. If the foreign body remains, mac-
rophages can fuse together to form foreign body giant
cells (FBGCs) (Klopfleisch and Jung 2017; Sheikh et al.
2015). FBGCs, if present, continue to release factors in
an effort to completely break down the implant (Foggia
et al. 2019; Henson 1971). In response to macrophage
activation and the presence of FBGCs, fibroblasts and
endothelial cells migrate to the implant site and prolifer-
ate (Foggia et al. 2019; Klopfleisch and Jung 2017). They
release extracellular matrix proteins such as collagen to
form granulation tissue around the implant. Over time,
the granulation tissue forms an irreversible fibrous cap-
sule around the implant (Lee et al. 2016), increasing the
impedance of the electrode-tissue interface.

Nerve implants that do not penetrate the epineurium,
such as cuff electrodes on the peripheral and vagus
nerves, also induce a foreign body response, albeit milder
than for penetrating electrodes (Rodriguez et al. 2000). A
risk with cuff electrodes is that they are too tight around
the nerve, inducing a compression injury that could lead
to permanent nerve damage distal to the implant (Grill
and Mortimer 2000). Additionally, the stiffness of the
cuff electrode can influence the tissue response, with a
greater tissue response occurring with more stiff elec-
trodes (Stiller et al. 2019). A spiral cuff is used in clinical
applications to reduce the risk of nerve compression and
allows for short-term swelling of the nerve following ini-
tial implantation (Grill and Mortimer 2000; Naples et al.
1988). The tissue response to a cuff electrode includes
encapsulation with macrophages, fibroblasts, and col-
lagen, as well as focal regions with perineurial thicken-
ing, fibrosis of the endoneurium, thinning myelin, and
reduced axonal density (Grill and Mortimer 2000; Payne
et al. 2019).

Device encapsulation

Barring a continued inflammatory response and device
failure, the final stage of the tissue response in both the
central and peripheral nervous systems is device encap-
sulation. Encapsulation occurs because the immune
cells are unable to digest the implant; instead, a protec-
tive barrier is formed to separate the device from the
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surrounding healthy tissue. As a result, the impedance
at the electrode-tissue interface is elevated, but is typi-
cally stable (Dalrymple et al. 2020a; Groothuis et al. 2014;
Jeffery et al. 2014; Wilk et al. 2016; Williams et al. 2007;
Xu et al. 1997). Device encapsulation complicates the
removal or replacement of implants or implant compo-
nents because the scar tissue can integrate strongly to the
device and surrounding tissues (Merrill 2014). However,
there are benefits to encapsulation, including physical
stability of the implant and protection from macrophage-
secreted factors (Jorfi et al. 2015).

Micro- and macro-motion: all you had to do was stay
Migration of lead wires and implanted electrodes can
occur if there is any tension on the lead wires, or in
response to gravity (such as with SCS, DRG, or sacral
stimulation electrodes) (Cameron 2004; Huygen et al
2020; Lyons et al. 2004; Nanivadekar et al. 2023; Zbar
2014). Lead wire migration or even complete removal of
electrodes can occur if the implant is not secured, lead-
ing to device failure. However, not all implanted devices
require lead fixation; cochlear implants remain stable in
the temporal bone and do not require additional fixa-
tion of the lead wires. Lead wire migration could possibly
cause damage to nearby structures and warrant a revision
surgery for removal or reimplantation of components.
The physical stability provided by the tissue response can
reduce the risk of lead migration and electrode removal,
instead securing the devices in place. However, the tissue
response around the implant can also increase stiffness of
the lead wires and electrodes, compounding the risk of
further tissue damage from movement. Tissue encapsu-
lation around micro-implants, such as intracortical elec-
trodes, can displace or extrude the implant, leading to a
loss of neuronal recordings due to an increased distance
from the electrode (Barrese et al. 2013; Rousche and Nor-
mann 1998).

Perpetual movement of an implanted neural inter-
face relative to the tissue can evoke an ongoing tissue
response. Movements can be divided into two catego-
ries: macro-motion and micromotion. Macro-motion is
larger-scale movements of the implanted devices relative
to the tissue. Examples include movements of the spinal
cord relative to the spine, which could affect the mechan-
ical and electrode stability of intraspinal electrodes
(Toossi et al. 2017), or intramuscular or intrafascicular
electrodes shifting relative to muscles during limb move-
ments (Pena et al. 2017). Relative movements between
the tethered fixation points of the implanted devices and
the tissue can lead to lead wire tension and, in extreme
cases, partial or complete removal of the implant (Biran
et al. 2007; Kim et al. 2004). Furthermore, as mentioned
above, repeated bending and tension on the lead wires
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can induce metal fatigue and fracture, ultimately causing
lead wire breakage.

Micromotions are more subtle movements of the tis-
sue relative to the implanted shank or electrodes. Micro-
motion can be caused by respiration, heartbeat, changes
in blood pressure, changes in cerebrospinal fluid (CSF)
pressure, and general movements within the intersti-
tial space (Kozai et al. 2015; Mahajan et al. 2020). Tissue
damage occurs during micromotion due to a mechani-
cal mismatch between stiff shanks and electrodes and
the soft tissue (Barrese et al. 2013; Goldstein and Salc-
man 1973; Groothuis et al. 2014; Subbaroyan et al. 2005).
Micromotion can induce compression or shearing of sur-
rounding neural tissue (Cheung 2007), inducing a more
vigorous tissue response (Kim et al. 2004). If electrodes
are sharp, micromotion produces the strongest tissue
response and gliosis at the tips (Edell et al. 1992; Kozai
et al. 2015; McCreery et al. 2010). The tips themselves
undergo changes in their structure and function due to
micromotion, including deterioration and recessing,
which results in a loss of recording signal over time, and
insulation cracks or peeling away from the shank, which
can reduce the specificity of the recording (Kozai et al.
2015; Prasad et al. 2012). Micromotion of an implanted
device in the spinal cord is more harmful than in the
brain, likely due to relative size (Ersen et al. 2015).

Neuron degeneration and loss near the implant site
has been extensively studied in the cortex due to the high
failure rate of intracortical recording electrodes. Elec-
trode insertion, the tissue response, and micromotion
contribute to neuronal loss surrounding an implanted
electrode (Biran et al. 2007, 2005; Jorfi et al. 2015;
Moxon et al. 2009; Prasad et al. 2012), with the largest
loss of neurons occurring shortly after the implantation
of the electrode array (Winslow et al. 2010). Neuronal
loss can continue for the duration of the implant due
to local, chronic inflammation, inducing a focal neuro-
degenerative state (McConnell et al. 2009). Explanted
intracortical electrodes can be surrounded by densely
packed layers of activated microglia (Szarowski et al.
2003; Turner et al. 1999), with the density of microglia
inversely correlated with the neuronal density surround-
ing the electrode (Biran et al. 2005). In both stimulating
and recording electrodes, there is more gliosis and neu-
ronal loss near the electrode tip due to micromotion
(Edell et al. 1992; Kozai et al. 2015; McCreery et al. 2021,
2010). As the radial distance away from the tip increases,
so does the neuronal density (McCreery et al. 2010).
There are also fewer and altered synapses adjacent to the
glial scar (Schultz and Willey 1976). Reduced neuronal
density near a microelectrode is detrimental to single
unit recordings in particular, because neurons need to
be within 130 pm of the recording site to be identified
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(Polikov et al. 2005). It has been suggested that neurons
migrate away from the implant site (Collias and Manue-
lidis 1957; Liu et al. 1999); however, another study failed
to find an increased neuronal density further away from
the implant site, suggesting that neuronal loss, rather
than migration occurs (Biran et al. 2005).

End game: clinical implications of device failure
Implanted neural interfaces are designed to treat neuro-
logical disorders. When these devices fail, either techno-
logically or biologically, there are clinical consequences.
These clinical consequences can include the loss of thera-
peutic efficacy and return of symptoms or dysfunction,
but can also include new clinical complications that are
a direct result of the implanted device failure, including
off-target effects, infection, and tissue damage. Complica-
tions, or adverse events, are reported to the United States
Food and Drug Administration (FDA) and classified as
either Serious Adverse Events (SAEs) and Adverse Events
(AEs) (FDA 2024). However, the lines between SAEs and
AEs are often blurry and inconsistently reported in litera-
ture and by hospitals (Barlas 2017; Gagliardi et al. 2018;
Tilz et al. 2024). Medical device failures are documented
in the Manufacturer and User Facility Device Experi-
ence (MAUDE) Database (Health 2024). However, this
includes all medical devices, not just implanted neural
interfaces. If device malfunction occurs repeatedly, it
can lead to recalls by the FDA (FDA 2025a, 2025b, 2023,
2019). Table 2 summarizes the reported rates of clinical
complications related to the failure of implanted neural
interfaces.

When a complication arises from failure of an
implanted neural interface, it is important to understand
how severe the complication is, so that the treating cli-
nicians can determine the most appropriate treatment.
There is a need for a clear guide to aid clinical decision
making according to the severity of the failure. In Table 3,
we have created such a guide by adapting the Clavien-
Dindo grading system for surgical complications (Dindo
et al. 2004). The examples provided were collected from
the former sections, as well as from the troubleshooting
algorithm developed by (Zbar 2014).

Long live: chronic testing to improve device
longevity

Often, the cause and effect of failure modes of implanted
neural interfaces cannot be delineated between techno-
logical and biological factors. Additionally, a combination
of failure modes can occur simultaneously. Therefore,
redundancy and improved manufacturing processes are
necessary to ensure reliability of implanted neural inter-
faces for the lifetime of the device user. Reliability is
determined via the characterization of the technological
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Table 2 Reported rates of clinical consequences of implanted neural interface device failure. References: (Branco et al. 2023; Chapman
etal. 2024; da Cruz et al. 2016; Daschner et al. 2017; Deng et al. 2006; Eldabe et al. 2016; FDA 2023, 2020; Force and da Silva 2017;

Garg and Wang 2023; Goudman et al. 2024; Hines et al. 2022; Hoffmann et al. 2023; Horan et al. 2020; lifeld et al. 2017; Kahlow and
Olivecrona 2013; Lander et al. 2020; Meng et al. 2018; Mitchell et al. 2023; Moman et al. 2021; Morishita et al. 2017; Mostafa and El Fiky
2024; Olson et al. 2023; Orlando and Cruz 2024; Pepper et al. 2013; Rizzo et al. 2020; Rolston et al. 2016; Rueb et al. 2020; Shibata et al.
2015; Sivanesan et al. 2019; Spindler et al. 2023; Toffa et al. 2020; Triolo et al. 2018; Vanloon et al. 2025; White-Dzuro et al. 2016)

Name Complication(s) and Rate(s)

Deep brain stimulation (DBS) Hardware-related infections (4%); readjustment of lead position (2.7%); lead fracture (1.4%); lead migration
(12.3%); pneunomia (2.3%); hematoma (1.4%); intracranial bleeding (6.1%); pulmonary embolism (0.6%);
death (0.2-0.32%)

Electrocorticography (ECoG) Surgical site infection (4%); hematoma (1-7.3%); infection from subdural placement (2.4-15.6%); seizure
(1-41%); deep vein thrombosis (2.3%); sepsis (< 1%); death (< 1%)
Depth electrodes Surgical site infection (2.4-14.9%)

Stentrode endovascular electrode array  Hematoma at insertion site (1/4 participants)
Spinal cord stimulation (SCS) Lead migration (3.07-9.97%); lead explant (2.02%); implanted pulse generator explant (2.67%); infection
(3.4-10%); hematoma (0.81%); device malfunction (27.1%); spinal cord injury (0.42%); death (0.47%)

Dorsal root ganglion stimulation (DRGS)  Trial lead infection (1,03%); implant infection (4.8%); revision infection (3.85%); lead migration (0.7-9.1%); lead
fracture (6%); lead migration (6%); lead defects (39%); revision (29%); fragments left following lead removal
(12%); explant (12%); permanent nerve damage during replacement procedure (9.1%)

Cochlear implant Surgical site infection (1.4-3.2%); hematoma or seroma (1.3-2.6%); major infection and necrosis (2.3%); device
fault (0.5%); electrode extrusion (2.6%); permanent facial palsy (0.09%)

Retinal prosthesis Revision surgery (3.4%); conjunctival erosion (6.2%); retinal detachment (6.7%); infection (16.7%)

Vagus nerve stimulation Surgical site infection (2.6-3.5%); hematoma (1.9%); lead fracture (3-11.9%); lead disconnection (0.2-2.5%);

stimulator malfunction (1.4%); battery displacement (0.2%); persistent vocal cord palsy (0.7%); deep infection
requiring explant (3.5%); explant due to implanted pulse generator dysfunction (4-16.8%)

Peripheral nerve stimulation Infection (0.1-0.7%); electrode failure (2-10%); lead fracture (6.25%)

Sacral stimulation Infection (1.6-6.6%); seroma or hematoma (3%); pocket revision due to infection (14.6%); lead wire breakage
(7.5%); lead fragments left behind following breakage (6%); lead migration (2.1%); battery depletion requiring
reoperation (1.7-39%); lead revision (13-18%); explant (4-24%)

Table 3 Grading system developed for the severity of clinical complications resulting from implanted neural interface failure,
including examples. This was modified from the Clavien-Dindo grading system for surgical complications

Grade Description Examples

I Minor loss of efficacy or complication requiring no surgical or pharmacologi- Reprogramming, warm compress for edema, imaging
cal intervention

Il Complications requiring pharmacological intervention Antibiotics or steroids for infection or edema
lla Single treatment
Ilb Repeated treatment
Il Complications requiring outpatient surgical intervention Draining a hematoma or debriding skin necrosis
% Temporary loss of function or disability Rehabilitation for nerve compression
\ Complications requiring inpatient surgical intervention Revision, removal, or replacement of part or all of device
Va Intervention not under general anesthesia
Vb Intervention under general anesthesia
VI Permanent loss of function or disability Ongoing rehabilitation for paralysis, treatment of seizures
Vil Life-threatening complications requiring intensive care management Sepsis from infection
Vila Single organ dysfunction
Vilb Multi-organ dysfunction
VIl Death related to the complication Sepsis from infection

and biological failure modes. This process typically and  (Dalrymple 2021; Henderson et al. 2006; Pena et al.
should entail benchtop testing, followed by acute and 2017; Shepherd et al. 2018). Computational modeling
most importantly, chronic testing of implanted devices can also be used to predict and identify failure modes
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of implanted devices (Henderson et al. 2006; Jorfi et al.
2015; Subbaroyan et al. 2005). With in vivo testing, it is
important to have clinically-relevant animal models for
testing novel implanted neural interface systems. It is
equally important to use electrode and implant assem-
blies that closely resemble the form factor and materials
used in the proposed implant.

Several testing methods can be used to minimize or
eliminate failure modes, or, if not out of the woods, can
be used to study the mechanisms of failure and monitor
the implant (Fig. 8). Lead wires are prone to breakage;
therefore, extensive benchtop fatigue testing is necessary
prior to implantation. Fatigue testing is an accelerated
process that entails repeatedly bending lead wires until
lead breakage or cracks in the insulation occur (Harris
et al. 2016; Pena et al. 2017; Fig. 8A). Neural interfaces
that have been implanted in people, such as DBS (Jiang
et al. 2015), SCS (Henderson et al. 2006), and LIFEs (Pena
et al. 2017) have reports characterizing their benchtop
fatigue testing. The American Society for Testing Materi-
als (ASTM) International has a standardized protocol for
fatigue testing (ASTM 2020).

Coatings on electrode surfaces are at risk of delami-
nating; therefore, their adhesion must be tested prior to
active in vitro or in vivo studies. The adhesion-by-tape
test (ASTM 2022) is a simple yet effective method for
testing the adhesion of electrode coatings (ASTM 2022;
Dalrymple et al. 2019; Green et al. 2012; Fig. 8A). Coating
material loss can be quantified following inspection using
scanning electron microscopy (SEM; Cvancara et al.
2020; Dalrymple et al. 2019; Green et al. 2012; Fig. 8A,C).
SEM can also be used to visualize damage to insulation
or electrode tips, such as cracking, peeling, corrosion, or
breakage (Prasad et al. 2012).

Accelerated aging is a benchtop process whereby
electrodes are housed (passive) and/or stimulated con-
tinuously (active) in a saline-like solution at an elevated
temperature (body temperature or higher; Fig. 8A).
Accelerated aging protocols mimic the physiological
environment but on a faster timescale (ASTM 2021;
Hukins et al. 2008). The saline-like solution can be com-
prised of saline, phosphate-buffered saline (PBS) (Noller
et al. 2019), artificial CSF (Vara and Collazos-Castro
2019), contain proteins such as bovine serum albumin,
or contain reactive chemicals such as hydrogen peroxide,

(See figure on next page.)
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which mimics reactive oxygen species (Street et al. 2018;
Takmakov et al. 2015). Accelerated aging protocols have
been applied to many types of implanted neural inter-
faces, both clinically available devices and prototypes
with novel electrode materials or coatings, including
but not limited to functional neuromuscular stimulation
devices (Smith et al. 1987), intracortical electrodes (Pat-
rick et al. 2011; Street et al. 2018; Takmakov et al. 2015;
Venkatraman et al. 2011), floating microelectrode arrays
(Bredeson et al. 2013), cochlear electrodes (Dalrymple
et al. 2019), and retinal prostheses (Lemoine et al. 2020).
Accelerated aging can also be used to test novel hermetic
packaging technologies (Nagarkar et al. 2017). Following
the accelerated aging protocol, the electrode surface is
often imaged using SEM to inspect for corrosion of the
electrode surface or delamination of coatings, the solu-
tion is examined using mass spectroscopy for particu-
lates of the electrode or coating material, the device is
checked for open or short circuits, and/or the electrodes
are tested using various electrochemical measures (Dal-
rymple et al. 2019).

Electrochemical measures describe the safety and
effectiveness of an electrode to conduct and/or deliver
charge at the electrode-tissue interface (Fig. 8A-C).
Electrochemical measurements can be acquired bench-
top using three electrodes: the working, reference, and
counter electrodes in a saline-like solution (Cisnal et al.
2018; Cogan 2008; Dalrymple et al. 2019) or in vivo
(Lempka et al. 2009; Shepherd et al. 2021). Charge stor-
age capacity (CSC) is the amount of charge that can be
stored in reversible reactions, i.e. without exceeding the
water window (Merrill et al. 2005). The CSC is measured
using cyclic voltammetry, where the electrode potential
between the working and counter electrode is slowly
cycled between the water window limits (Cisnal et al.
2018; Cogan 2008). The CSC depends on the electrode
geometric surface area, material, electrolyte composition,
and waveform parameters. It is desirable to have a large
CSC such that more charge can be injected safely into the
tissue to excite neurons. The charge injection limit (CIL)
is the maximum amount of charge that can be injected
into the tissue in reversible reactions during a stimula-
tion pulse (Cisnal et al. 2018; Dalrymple 2021). The CIL
is determined using voltage transients, where bipha-
sic, charge-balanced, cathodic first pulses are delivered

Fig. 8 Overview of testing methods used to evaluate implanted neural interface systems. Benchtop methods include the adhesion

test of the electrode material, accelerated aging of the implanted portion of the device, electrochemical measures such as CSC, CIL, EIS,

and common-ground impedance, fatigue testing of lead wires, and SEM of the electrode surface. In vivo testing includes testing serum and CSF
samples, electrochemical measures, and electrophysiology of evoked responses. Post-explant testing includes electrochemical measures

on the explanted electrodes and SEM of the electrode surface. Post-mortem analysis includes trace analysis and histological examination of tissues
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through the electrode at a constant pulse width and
increasing current amplitudes (Lee et al. 2016). Imped-
ance is typically measured using one oftwo methods:
common ground impedance and electrochemical imped-
ance spectroscopy (EIS). Common ground impedance
entails measuring the voltage resulting from a small cur-
rent stimulus and calculating the corresponding resist-
ance using Ohm’s law (Shepherd et al. 2021). For optimal
recording performance and high electrode yield, it is best
if the electrode impedance is in the 2 to 150 kQ range
(Chen et al. 2022; Fu and Rutishauser 2025; Prasad et al.
2012); however, these values may vary for different appli-
cations. EIS produces a more comprehensive measure of
impedance across a range of frequencies (Cogan 2008).
EIS magnitude and phase values can be used to generate
an equivalent circuit model, of which there are several
types (Lempka et al. 2009; Lisdat and Schifer 2008; Shep-
herd et al. 2021; Wei and Grill 2009). The components of
the equivalent circuit model indicate both electrode and
tissue behaviour.

Acute and/or chronic in vivo testing in animal mod-
els should follow benchtop testing to ensure the
implanted devices can survive a more realistic environ-
ment (Fig. 8B). Much of the time, chronic in vivo test-
ing is performed over a period of months, but can be
executed for years in larger animal models (Barrese et al.
2013; Chestek et al. 2011; Christensen et al. 2014; Grill
and Mortimer 2000; Jeong et al. 2015; Kane et al. 2013;
Kozai et al. 2015; Lago et al. 2007; Nayagam et al. 2014;
Opie et al. 2018; Oxley et al. 2016; Payne et al. 2018; Rod-
riguez et al. 2000; Sahasrabuddhe et al. 2021; Shepherd
et al. 2021; Stock et al. 1979). Longer durations of chronic
in vivo testing provide valuable insight into the device
performance and tissue reaction to implants over a time-
frame that more closely matches the duration in human
implementation. Furthermore, the tissue response after
several months is expected to be stable, entering the
device encapsulation stage described above. However,
long-duration chronic in vivo testing is costly, and inves-
tigators must balance resource availability with the gain
of information from longer duration implants.

The location, size of the implant, and electrode geom-
etry should scale to the animal model for the most
accurate testing for the proposed clinical application.
During and following the chronic implantation period,
the implanted devices are characterized by how well they
function and whether or not they maintained their physi-
cal integrity. For example, electrochemical measures can
be used to track changes at the electrode-tissue interface
over time (Abidian et al. 2010; Dalrymple et al. 2020Db,
2020a; Jeong et al. 2015; Kane et al. 2013; Opie et al. 2016;
Shepherd et al. 2021). Electrode corrosion or metal disso-
lution causes pitting on the electrode surface, increasing
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the surface area (Prasad et al. 2012; Shepherd et al. 2021).
This increase in surface area results in an increased CSC,
and can also reduce the impedance (Dalrymple et al.
2020b, 2020a; Merrill et al. 2005; Shepherd et al. 2021).

Insulation damage can result in a decreased imped-
ance, due to an increased surface area of the conduc-
tive electrode (Prasad et al. 2014). Daily fluctuations in
impedance can occur, likely also influenced by the tissue
response to the implant, transient bleeding, and edema
(Groothuis et al. 2014; Prasad et al. 2012). During cur-
rent-controlled stimulation, a higher electrode imped-
ance demands more power from the pulse generator
because an increased stimulation amplitude is required
to excite the same neurons (Butson et al. 2006). Con-
tinued increases in stimulation amplitude to maintain
efficacy has been reported for DBS (Krack et al. 2002;
Yamamoto et al. 2004).

For devices that transfer power wirelessly through the
skin, such as cochlear implants, power transmission is
limited by the wireless components and safety standards.
Therefore, an increased power demand due to high elec-
trode impedances may not be possible. While recording
neural activity, the impedance can greatly impact the
signal-to-noise ratio (Chen et al. 2022; Chu et al. 2012;
Chung et al. 2015; Groothuis et al. 2014); a high imped-
ance (> 1.5 MQ) reduces the yield of single units recorded
(Prasad et al. 2014). Periodic electrochemical assessment
can inform on the state of the electrode-tissue inter-
face and be used to explain changes in required stimu-
lation amplitude to be effective. Characterizing chronic
implants in vivo can reveal challenges that were not
identified in benchtop or acute testing, especially those
related to the tissue response or the delamination of elec-
trode coatings (Abidian et al. 2010; Cvancara et al. 2020;
Dalrymple et al. 2020b, 2020b; Green et al. 2012). Some-
times, the results of the chronic in vivo testing require a
change in design, and begin the testing again, to ensure
optimal biocompatibility and longevity. Therefore, these
chronic in vivo studies must be performed to ensure
that there are no surprises come time to translate these
implants to clinical application.

Several electrophysiological measures can be used to
monitor the implanted neural interface and how well it is
interacting with neurons (Fig. 8B). In general, a decaying
or loss of signal from recording neural interfaces can eas-
ily be measured over time, such as intramuscular EMG
electrodes (DeMichele et al. 2013), ECoG arrays (Baek
et al. 2014), or intraspinal electrodes (Greenspon et al.
2019). For stimulating electrodes, either the electrodes
need to be connected to a recording device such that sin-
gle units or local field potentials can be recorded through
the stimulating electrodes, or recording electrodes are
placed elsewhere along the neuraxis to measure an
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evoked response (McCreery et al. 2004; Prasad et al.
2012). Examples of evoked responses include evoked
auditory brainstem responses (EABRs) elicited by stimu-
lation through cochlear implants (Dalrymple et al. 2020a,
2020b; Shepherd et al. 2020), or evoked compound action
potentials (ECAPs), which can be evoked by stimulating
the DRG, vagus nerve, spinal cord, and periphery, and
recorded from the peripheral nerves, vagus nerve, or spi-
nal cord (Calvert et al. 2022; Dalrymple et al. 2021; Fisher
et al. 2014; Payne et al. 2020; Shulgach et al. 2021; Ting
et al. 2024). Chronic animal studies should monitor the
natural and electrically-evoked neural activity longitudi-
nally to ensure that the target neural population is being
recorded/stimulated. In humans, patients may be able
to report a response. For example, patients with a coch-
lear implant can report whether they can hear during
stimulation, or retinal prosthesis users can report seeing
phosphenes.

Blood serum and CSF samples can be extracted and
analyzed throughout the duration of an implant to
monitor the inflammatory response (Prasad et al. 2012;
Fig. 8B). For example, phosphorylated neurofilament
heavy subunit (pNF-H) is a biomarker for axonal injury
that can be detected in both blood and CSF in response
to ongoing axonal damage (K. J. Anderson et al. 2008a,
b; Prasad et al. 2012; Shaw et al. 2005). Sustained and
fluctuating elevated levels of pNF-H has been found fol-
lowing chronic implantation of intracortical electrodes
in rats, indicating ongoing axonal damage (Prasad et al.
2012). Additionally, cytokine biomarkers that have been
identified in CSF and serum samples in response to a spi-
nal cord injury, such as IL—6, IL-8, monocyte chemoat-
tractant protein (MCP)—1, tau, glial-expressed protein
S100B, and glial fibrillary acidic protein (GFAP) (Kwon
et al. 2010), may be useful to determine ongoing inflam-
mation in response to electrodes implanted in the spinal
cord. At the conclusion of the implant testing duration,
tissue surrounding the implant as well as organs respon-
sible for filtering toxins, such as the kidneys and liver, can
be tested using trace analysis for metal or polymer par-
ticulates that may have originated from the electrodes
(Shepherd et al. 2021; Fig. 8C). Furthermore, the tissue
surrounding the implant can be excised, sectioned, and
examined histologically for the presence and activation
of immune cells (Dalrymple et al. 2020a, 2020b; McCre-
ery et al. 2010; Nayagam et al. 2014; Schendel et al. 2014;
Fig. 8C).

When neural interfaces are implanted into people, they
can be monitored over the duration of the implant using
the aforementioned methods, especially impedance or
evoked response testing (Fisher et al. 2009). Early feasi-
bility and first-in-human trials aim to assess the safety
and efficacy of implanted neural interfaces (Ayton et al.
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2014; Bergey et al. 2015; Cvancara et al. 2020; Hochberg
et al. 2006; Kilgore et al. 2003; Mitchell et al. 2023). In the
rare instances that implanted electrodes are explanted,
the electrode surface and electrochemical behaviour can
be characterized (Woeppel et al. 2021; Fig. 8C). Other-
wise, investigating how the implanted neural interfaces
interact with the tissue or inspecting the electrodes for
corrosion is done post-mortem (Haberler et al. 2000;
Moss et al. 2004; Nadol et al. 2014; O’Malley et al. 2017;
Szymanski et al. 2021; Towle et al. 2020). Post-mortem
examination of tissue is extremely informative because it
reveals the tissue response and electrode integrity after
lifetime use of the implant (Fig. 8C).

Wildest dreams: the future of implanted neural
interfaces

The therapeutic successes of many implanted neural
interfaces have sparked a dynamic industry (Weber 2020)
as well as many thematic funding opportunities, includ-
ing ElectRx, BG+, ReNet, N3, NESD, RAM, SUBNETS,
TNT, and HAPTIX by the Defense Advanced Research
Projects Agency (DARPA) and other major funding agen-
cies such as the National Institutes of Health (NIH) and
Department of Defense (DoD) in the United States of
America. With technological advances in nanoengineer-
ing, materials science, electromagnetism, and optoge-
netics, the future of implanted neural interfaces is bigger
than the whole sky, but not untouchable.

Through chronic in vivo experiments, failure modes
of implanted neural interfaces can be identified, and
innovative solutions can be applied to ameliorate them.
As described, many different animal models have been
used for preclinical testing of implanted neural inter-
faces. Mouse models for implanted neural interfaces
open many doors of investigation. For example, to better
understand the specific genes, enzymes, and cellular sig-
nalling pathways that may influence the performance of
the neural interfaces, transgenic mouse models have been
developed (Bedell et al. 2018a, 2018b; Hermann et al.
2018b, 2018a; Kozai et al. 2014b). Furthermore, 2-photon
microscopy can be used to perform live imaging of the
mouse brain, particularly to study the live tissue response
to intracortical electrodes (Kozai et al. 2012b, 2016).
Mouse models also enable the use of optogenetics, which
can be used to locate specific cell types responsible for
the recorded electrophysiological behaviour (Anikeeva
et al. 2011; Park et al. 2017; Pashaie et al. 2014). Mouse
models for studying implanted neural interfaces can be
challenging, especially with the size limitations; how-
ever, a recent study showed that the strain on cortical tis-
sue from a microelectrode implant was no different in a
mouse compared to a rat model (Mahajan et al. 2020).
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Surgical approaches and implantation techniques
can be modified to invoke less trauma to the tissue. For
example, delivering electrodes by injecting them through
a syringe, such as with the Injectrode (Dalrymple et al.
2021; Trevathan et al. 2019) or ultra-flexible mesh elec-
tronics (Fu et al. 2017; Hong et al. 2018; Liu et al. 2015),
can both quicken the implant procedure time and reduce
the trauma to surrounding tissues. Additionally, updated
methods for securing lead wires can be improved to
reduce lead migration, cracks in insulation, and infec-
tions, as has been demonstrated for DBS implants
(White-Dzuro et al. 2016). Improved materials, such
as alginate hydrogel, have improved the seal in the dura
mater following electrode implantation (Nunamaker and
Kipke 2010). Intracortical and ECoG recordings require
the removal of a portion of the skull to implant the elec-
trodes and depth electrodes require small holes to be
drilled into the skull for insertion. An alternative record-
ing device, the Stentrode, is implanted endovascularly
near the motor cortex, reducing both the surgical trauma
and avoiding the tissue response from the brain (Oxley
et al. 2020, 2016). However, one downside to techniques
such as the Stentrode or ECoG are that the electrodes are
at a greater distance from the neurons; therefore, they
record local field potentials rather than individual neuron
spikes. This may limit the specificity and degrees of free-
dom in the recordings of these techniques, but new sig-
nal processing methods and decoders have demonstrated
the utility of these technologies (Forsyth et al. 2019; Luo
et al. 2022; Volkova et al. 2019).

Wireless communication and power transfer between
external and internal components or between the stimu-
lator and electrode can reduce the incidence of lead wire
breakage. However, as reviewed above, wireless meth-
ods are not without limitations. Innovative methods
to transfer data and/or power are being developed to
mitigate issues related to heating, overlap requirements,
transmission efficiency, and form factor (Robinson
et al. 2024). These technologies leverage RF and induc-
tive coupling, volume conduction, ultrasound, optics,
and magnetoelectrics (Becerra-Fajardo et al. 2024; Ben-
edict et al. 2022; Kim et al. 2023; Lee et al. 2021; Tawa-
kol et al. 2024), including neural dust for recording from
peripheral nerves (Seo et al. 2016). Additionally, battery-
free technologies that harvest energy from the body are
under development to facilitate distributed networks of
implanted neural interfaces that do not require charging
or battery replacement (reviewed in Nair et al. 2023).

Reducing the stiffness of hermetic packaging, lead
wires, and electrodes has also been explored to reduce
failure of implanted neural interfaces. Reducing the stift-
ness of implanted devices to more closely match that of
the surrounding tissue leads to a reduced inflammatory
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response (He et al. 2020; Jorfi et al. 2015; Patel and Lieber
2019; Sohal et al. 2016). Flexible hermetic packaging
made from silicone, polydimethylsiloxane (PDMS), par-
ylene, polyimides, epoxies, polyurethanes, and liquid
crystal polymers have been explored as an alternative
to the conventional titanium packaging (Hassler et al.
2011; Jeong et al. 2015; Nagarkar et al. 2017; Rubehn et al.
2009). However, many of these polymeric materials are
porous to water vapour and degrade under physiological
conditions (Hassler et al. 2011; Traeger 1977).

Low stiffness materials have also been used for elec-
trodes and arrays (Fekete and Pongracz 2017). For
example, electronic dura (e-dura) is an array capable of
recording, electrical stimulation, and chemical injection,
and has the same elasticity as the dura mater (Minev et al.
2015). Other flexible arrays for SCS have been developed
and tested in rats (Hogan et al. 2021) and flexible micro-
scale wires have been implanted in the brain of mice for
recording (Yin et al. 2022). Flexible microelectrode arrays
have been developed and tested in slug DRG (Sperry
et al. 2018) as well as rodent brains (Harris et al. 2011b;
Zhao et al. 2022). Flexible depth electrodes have been
implanted in the brains of small and large animal mod-
els (Lee et al. 2024). Intrafascicular electrodes typically
use stiff needles (Badia et al. 2011); more recent designs
utilize microneedles embedded in soft silicone, result-
ing in stretchable and flexible intrafascicular electrodes
for recording from peripheral nerves (Yan et al. 2022).
Novel polymeric materials can be used for electrodes on
peripheral nerve cuffs, enabling them to stretch with the
cuff (Cuttaz et al. 2021). Arrays with multiple penetrat-
ing electrodes and flexible bases can reduce the relative
motion of the electrodes (Khaled et al. 2013). Flexible
electronics using nanotechnologies have been used for
detecting biomarkers (Farsinezhad et al. 2013; Yan et al.
2021), intracellular recording and stimulation (Robinson
et al. 2012), and intracortical recording (Zhao et al. 2019,
2017).

Coatings on electrodes and shanks can be used to
improve acceptance. Conductive hydrogel coatings
applied to cochlear implants (Dalrymple et al. 2020b),
DBS electrodes (Hyakumura et al. 2021), and electrodes
implanted in the auditory cortex (Kim et al. 2010) reduce
the stiffness and impedance of the electrode. Hydrogel
electrodes have also been used for flexible cuff electrodes
around the cervical vagus nerve to allow for adjustments
in diameter of the cuff (Horn et al. 2021). Mechanical
insertion damage can be reduced by using less stiff elec-
trode and shank materials; however, they need to be stiff
enough to penetrate tissue but not too stiff that causes
excessive damage. One solution to this problem is to use
a stiff implant carrier that dissolves away, such as car-
boxymethyl cellulose (Gilgunn et al. 2012; Kozai et al.
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2014a), resorbable polymers (Lewitus et al. 2011), or pol-
yethylene glycol (Kato et al. 2006), leaving behind flexible
electrodes. Another option is to use a stiff implant car-
rier that is removed, leaving the softer electrode behind
(Ferro et al. 2018; Hanson et al. 2019; Kozai and Kipke
2009; Musk and Neuralink 2019; Williamson et al. 2015).
Furthermore, temperature-sensitive and mechano-sensi-
tive polymers that soften at physiological temperatures
(Capadona et al. 2008; Hess et al. 2013; Ware et al. 2014)
can reduce the loss of neuronal density near the device
(Harris et al. 2011a) as well as reduce tissue deforma-
tion (Garcia-Sandoval et al. 2018). Similarly, shape mem-
ory polymers that soften in vivo have been explored to
reduce the stiffness of neural implants (Sharp et al. 2006;
Ware et al. 2014).

Novel electrode and array geometries that are porous
or latticed have been designed with the intention of inte-
grating the device with the tissue. For example, micro-
ECoG arrays constructed with a mesh-like substrate
showed a reduced thickness of meningeal tissue growth
between the array and the neural tissue (Schendel et al.
2014). The holes in the mesh enabled revascularization of
the tissue around the device. Several designs for intracor-
tical probes with porous structures have been developed
to allow neural, connective, and vascular tissues to grow
through the pores instead of encapsulating the device
(Kang et al. 2011; Seymour and Kipke 2007, 2006; Xie
et al. 2015). Similar neurovascular integration has been
achieved with a porous peripheral neural interfaces as
well (Veith et al. 2021). However, removal of these inte-
grated devices in the event of failure or infection may
lead to excess tissue damage.

The acceptance of an implant by the surround tissue
can be enhanced using coatings that are bioactive (Chap-
man et al. 2020; Klopfleisch and Jung 2017; Rousche
et al. 2001). Bioactive refers to using coatings that con-
trol or calm down the intrinsic tissue response. Bioac-
tive coatings may contain peptides that promote neurite
outgrowth (Green et al. 2009) and reduce microglia acti-
vation and migration (Azemi et al. 2011; Sridar et al.
2017), reduce protein fouling (Golabchi et al. 2019; Kozai
et al. 2012a; Rao et al. 2012), release anti-inflammatory
agents (Gaire et al. 2018; Kim and Martin 2006; Kruk-
iewicz et al. 2019; Wadhwa et al. 2006; Zhong and Bel-
lamkonda 2007, 2005), prevent glial scar formation (He
et al. 2006; Massia et al. 2004; Tien et al. 2013), catalyze
reactive oxygen species (Potter-Baker et al. 2014), or
release trophic factors to attenuate neural degeneration
(Chikar et al. 2012; Kato et al. 2006). Neural interfaces
can also host microfluidic systems for delivering fac-
tors that reduce the tissue response (Altuna et al. 2013;
Frey et al. 2018; Takeuchi et al. 2005). Not all implants
need to remain implanted forever and always; temporary
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monitoring of intracranial pressure or evoked potentials
could be realized through resorbable biosensors (Kang
et al. 2016). Resorbable biosensors make use of materials
such as poly(lactic-co-glycolic acid) (PLGA), nanoporous
silicon, magnesium foils, and silicon dioxide that undergo
hydrolysis during implantation, dissolving after approxi-
mately four to five weeks (Gentile et al. 2014).
Stimulation safety limits ensure that the electrode
polarization does not exceed the water window. How-
ever, the recommended stimulation safety limits were
derived from a study that chronically implanted platinum
electrodes that were stimulated over a few hours into
brain tissue (McCreery et al. 1990). Because the central
and peripheral nervous systems have different immune
cells, hence different tissue responses to implanted
devices, stimulation safety limits should be determined
independently for each region of the body. For exam-
ple, high charge stimulation (exceeding the stimulation
safety limits) of the cochlea did not result in neuronal
death (Shepherd et al. 2021) but did result in corrosion
of platinum from the electrode, and platinum particu-
lates in the tissue capsule. Therefore, new materials need
to be developed that can tolerate high charge stimulation
such that stimulation limits can be identified for all inter-
face sites. Many new materials have been designed with
the goal of reducing electrode impedance, which allows
for more and smaller electrodes, and a wider stimulation
range, which can improve selective activation of neu-
rons (Ludwig et al. 2011). For example, high surface area
materials such as reduced graphene oxide, conductive
hydrogel, and electrodeposited Platinum-Iridium have
been explored for reducing the impedance of cochlear
electrodes (Dalrymple et al. 2020a, 2020b, 2019). Fur-
thermore, many different Poly(3,4-ethylenedioxythio-
phene) (PEDOT) formulations have been developed and
tested for intracortical electrodes (Ganji et al. 2018; Lud-
wig et al. 2006; Seymour et al. 2011; Venkatraman et al.
2011), intraspinal microstimulation (Vara and Collazos-
Castro 2019), and peripheral nerve cuffs (Lee et al. 2016).

The other side of the door: data storage

and programming considerations

In addition to addressing the biological and hardware-
related failure modes, there are software and data-related
concerns that are important to consider in the develop-
ment, optimization, and translation of implanted neu-
ral interfaces. Modern and future implanted neural
interfaces seek to interface with more neurons, which
demands more electrodes that are smaller and more
selective in their recordings and/or activation. With this
increased demand, the complexity of both processing
recordings and delivering stimuli increases. More sophis-
ticated programming methods are needed, beyond the
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simple input—output and closed-loop systems currently
in use. Neurons can be more precisely activated dur-
ing stimulation by improving both spatial and temporal
targeting. Spatial methods manipulate the strength and
shape of the electric field to specify which neurons are
activated. The electric field can be adjusted by changing
the stimulation amplitude, pulse width, and pulse train
frequency, as is common with modern devices. Electrode
size, number, configuration (e.g., multipolar), and cur-
rent steering methods can shape the electric field to opti-
mally and precisely activate neurons (Dumm et al. 2014;
Mishra et al. 2023; Tebcherani et al. 2024). Typical stimu-
lation methods activate neurons synchronously, which is
not how neurons naturally fire. Neurons can be activated
more closely to their natural firing patterns using biomi-
metic stimulation, which entails modulating both ampli-
tude and frequency of stimulation pulses (Formento et al.
2020; Okorokova et al. 2018).

Strategies to control the timing or intensity of stimu-
lation determine when and how many neurons are acti-
vated. While current clinical devices have relatively
simple control strategies that are often open-loop,
closed-loop control is become more common. Closed-
loop methods use recorded signals (for example, ECAPs)
to improve the effectiveness and efficiency of the stimu-
lation method (Brooker et al. 2021; Kuo et al. 2018).
Control algorithms can be made more personalized
and powerful with the use of machine learning (Dal-
rymple et al. 2020¢; Dalrymple and Mushahwar 2020;
Desautels et al. 2015). Informative and real-time signals
are required to inform control strategies, which can be
achieved through onboard sensing and processing of
biosignals, and neural decoding methods.

With the gathering of large amounts of neural data,
security concerns arise, particularly with how the data
are transferred and stored (Jiang et al. 2023; Maiseli et al.
2023). Cloud-based data storage and computing, as well
as the use of AI-methods such as large language models
to interpret data are growing in popularity and present
concerns with personal health information. Methods for
enhancing security and ensuring ethical data handling
must continually adapt alongside rapid technological
advancements. Moreover, policies governing the approval
and regulation of implanted neural interfaces need con-
stant updating to align with these evolving developments.

Conclusions

Long story short, neural interfaces implanted through-
out the body have demonstrated great success in treating
a growing variety of conditions. Despite these successes,
the longevity of implanted neural interface systems are
impeded by mechanical, technological, and biological
barriers. Mechanical and electronic failures can occur
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in any of the components of the implanted system. The
immune response to an implanted neural interface con-
sists of acute and chronic phases and differs between
the central and peripheral nervous systems. Advances in
material science and engineering are actively working to
reduce the tissue response to implanted neural interfaces
by reducing their size and stiffness as well as by using fac-
tors to reduce inflammation. Cycles of improving these
devices and materials with chronic in vivo testing is
needed to thoroughly test new systems prior to clinical
translation to ensure their long-term biocompatibility for
human implantation.
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