- Review
- Open access
- Published:
Overcoming failure: improving acceptance and success of implanted neural interfaces
Bioelectronic Medicine volume 11, Article number: 6 (2025)
Abstract
Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improving the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades and improving the health and quality of life of many patient populations. Despite these successes, implanted neural interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsulation of the device. This review describes the challenges faced by developers of neural interface systems, particularly devices already in use in humans. The mechanical and technological failure modes of each component of an implant system is described. The acute and chronic reactions to devices in the peripheral and central nervous system and how they affect system performance are depicted. Further, physical challenges such as micro and macro movements are reviewed. The clinical implications of device failures are summarized and a guide for determining the severity of complication was developed and provided. Common methods to diagnose and examine mechanical, technological, and biological failure modes at various stages of development and testing are outlined, with an emphasis on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface systems.
Background
Implanted neural interfaces are electronic devices that interact with the nervous system to sense (record) or stimulate neural activity to treat neurological disorders. They differ slightly from other implanted bioelectronic devices, such as pacemakers, in that they are implanted in or near neural tissue, including the brain, spinal cord, or peripheral nerves (Fig. 1). Several neural interfaces for stimulating and recording, such as cochlear implants, deep brain stimulation (DBS), spinal cord stimulation (SCS), electrocorticography (ECoG), and depth electrodes have market approval and have been used clinically for decades with great success. Some of these devices are used clinically “off-label” to explore new treatment applications, and several emerging neural interface technologies are being developed and tested in commercial and research investigational clinical trials (Fig. 2). The major components of implanted neural interface systems are: (i) the pulse generator (for stimulation) and/or data acquisition (DAQ) device (for recording), (ii) power and communication, (iii) packaging, (iv), lead wires and interconnects, and (v) electrode(s) (example of a cochlear implant system shown in Fig. 3).
Examples of implantable neural interfaces that have been implanted in humans. Some of these technologies have market approval for clinical use, some are used clinically off-label, while many others are under investigation in academia and in industry and are limited to clinical trials. References: Deep brain stimulation: (Drobisz and Damborská, 2019; Kalia et al. 2013; Kogan et al. 2019; Li and Cook 2018; Rapinesi et al. 2019; Wang et al. 2018); Electrocorticography: (Berger and Ojemann 1992; Leuthardt et al. 2004); Depth electrodes: (Krusienski and Shih 2011; Lehongre et al. 2022); Intracortical electrode array: (Ajiboye et al. 2017; Barry et al. 2023; Collinger et al. 2013; Deo et al. 2024; Drew 2024; Flesher et al. 2021; Hosman et al. 2023; Rastogi et al. 2021; Willett et al. 2023, 2021); Endovascular electrode array: (Mitchell et al. 2023; Oxley et al. 2020); Epidural spinal cord stimulation (Angeli et al. 2018; Barolat et al. 1988; Bose et al. 2025, 2024; Capogrosso et al. 2024; Carhart et al. 2004; Chandrasekaran et al. 2020; Darrow et al. 2019; Dekopov et al. 2015; Gill et al. 2018; Goodwin et al. 2023; Harkema et al. 2018; Iversen et al. 2024; Nanivadekar et al. 2023; Pinter et al. 2000; Powell et al. 2022; Raslan et al. 2007; Richardson and McLone 1978; Shealy et al. 1967; Singh et al. 2023; Squair et al. 2021; Tator et al. 2012; Wagner et al. 2018); Cochlear implant: (Shepherd et al. 2013; Zeng et al. 2008); Retinal prosthesis: (Ayton et al. 2014; Christie et al. 2022a; Gregori et al. 2016); Vagus nerve stimulation (Austelle et al. 2022; Dawson et al. 2021; De Ferrari et al. 2011; Dibué-Adjei et al. 2019; Koopman et al. 2016; Kosel et al. 2011; LivaNova 2023; Rush et al. 2005; Sinniger et al. 2020); Dorsal root ganglion stimulation: (Deer et al. 2019; Liem et al. 2013; Sverrisdottir et al. 2020); Peripheral nerve stimulation: (Charkhkar et al. 2018; Gan et al. 2012; George et al. 2019; Goree et al. 2024; Raspopovic et al. 2014; Tan et al. 2014); Functional electrical stimulation: (Chaplin 1996; Hardin et al. 2007; Kobetic et al. 1999; Makowski et al. 2021; Peckham et al. 2001); Intramuscular electromyography: (Hart et al. 2011; Heald et al. 2019; Page et al. 2018); Intraspinal microstimulation: (Nashold et al. 1981, 1972); Sacral nerve stimulation (Hull et al. 2013; Sukhu et al. 2016; Tanagho et al. 1989)
Cochlear implant, demonstrating the variety of components of implanted neural interfaces. The magnets connect the external (left) and internal (right) units across the skin. The microphone on the external unit records sound, the sound processor converts the sound recordings to a digital signal with stimulation commands, the stimulation commands and power from the battery are sent from the external to the internal transceiver, the stimulation commands are converted into a stimulation output by the pulse generator, the lead wires carry the current to the electrodes, which generate an electric field that activates auditory neurons that lie outside the cochlea. Recording of impedance at the electrode-tissue interface can also occur, where the DAQ records the electrode impedance with reference to the ground electrode, and transmits these data to a different external transceiver to transfer the data to a computer for viewing by clinical team members
Pulse generators deliver electrical current to activate the target neurons. Recording DAQ devices typically contain amplifiers and filters to increase the signal-to-noise ratio of the recorded signal. Both stimulating and recording devices might also have components for additional processing and control. While many clinical devices use fully implantable pulse generators, including SCS and DBS, other devices, such as many models of cochlear implants, employ inductive coupling to transfer power and control signals wirelessly across the skin. Furthermore, SCS and DBS implantable pulse generators sometimes require communication with external modules for data transfer or recharging.
Wireless power transmission, battery recharging, and communication to implanted neural interfaces typically uses inductive radio frequency (RF) or near-field coils on either side of tissue (for example, skin (Zeng et al. 2008) or dura mater (Powell et al. 2017)). The internal and external RF coils must be coupled by overlapping physically as much as possible with a small thickness of tissue in between; this may be difficult in some anatomical locations such as the skull or back (Troyk and Rush 2009). The more electrodes in a neural interface the higher the power and data rate transmission requirements, increasing the bandwidth and power consumption (Nair et al. 2023). Data and power transmission are limited due to safety restrictions: the power density in the body must be < 80 mW/cm2 to avoid tissue damage from heating (Seese et al. 1998).
Implanted electronics are packaged, typically in rigid Titanium housing (Sidambe 2014), which acts as a biocompatible hermetic seal. Hermetic seals keep the enclosed electronics safe and sound from the moisture and ions in the tissue (Merrill 2014). Wires connect the internal components to external components such as electrode leads via a feedthrough assembly that often consists of a ceramic or fused silica insulator (Nagarkar et al. 2017).
Lead wires connect the electrodes to the pulse generator and/or DAQ unit. They are insulated, often with silicone, polyimide, parylene, or other flexible inert polymer materials (Barrese et al. 2013; Kuo et al. 2013).
Electrodes are the conductive materials that interface with neurons. They come in many forms including rings, pads, and shanks and can be penetrating or non-penetrating into the neural tissue (Fig. 4). Electrodes can vary greatly in size, depending on the neural target and electrode density, although electrodes on clinically available leads are more similar to each other. Some electrode designs, such as those for intraspinal microstimulation or longitudinal intrafascicular electrodes (LIFEs), use a continuous material for the lead wire and electrode, where the electrode is simply the de-insulated portion of the lead (Bamford et al. 2017; Rijnbeek et al. 2018). Depth electrodes are similar in design to many clinically-available implanted electrodes; however, they come in a hybrid version where microwires splay from the tip of the array to record from single neurons (Fu and Rutishauser 2025). Most clinical electrodes are comprised of platinum or platinum-iridium alloys (Cogan 2008; Ford 2010; Stöver and Lenarz 2011). Pad-type electrodes, including those used for transverse intrafascicular multichannel electrodes (TIMEs) and ECoG, use sputtering, etching, stamping, or welding manufacturing techniques (Boretius et al. 2010; Konerding et al. 2018). Many other electrodes, such as cylindrical electrodes or those used for intracortical interfaces, require metal bonding or welding (Barrese et al. 2013). Coatings on the electrodes are sometimes used to increase the conductivity; commonly, iridium oxide is used (Woeppel et al. 2021).
Types and dimensions of different types of implanted neural interface electrodes in humans. A Penetrating electrodes, B Non-penetrating electrodes. References: UEA: (Blackrock Neurotech 2023a; Campbell et al. 1991); USEA: (Blackrock Neurotech 2023b); ISMS: (Bamford et al. 2017; Dalrymple et al. 2018; Nashold et al. 1972); LIFE: (Malagodi et al. 1989; Rijnbeek et al. 2018); TIME: (Boretius et al. 2010); DBS: (Butson and McIntyre 2006; Medtronic 2022); Depth electrodes: (Fu and Rutishauser 2025); ECoG: (Dubey and Ray 2019); Retinal: (Ayton et al. 2014); Stentrode: (John et al. 2019); Vagus: (Mehta et al. 2018; Suminski et al. 2023); PNS cuff: (Fisher et al. 2009); Cochlear: (Dalrymple et al. 2019; Nguyen et al. 2013); SCS linear: (Boston Scientific, 2017; Medtronic 2017); SCS paddle: (Medtronic 2017); FINE: (Tyler and Durand 2002); Sacral: (Markland et al. 1972; Rijkhoff et al. 1997, 1994); DRGS: (Al-Kaisy et al. 2019)
Many implanted neural interfaces remain effective in humans for years to decades (Table 1). Despite the great successes of implanted neural interface systems, each of the aforementioned components is a potential source of failure. Furthermore, each application has specific challenges, such as surgical access, safe implantation, movement of local tissues, and electrochemical reactions at the electrode-tissue interface. The effectiveness and reliability of neural interfaces are limited by these technological and biological challenges that can impede translation and years-long use of the devices in humans. In the following sections, we will review several of these barriers and how they affect device longevity, with a focus on devices that have been implanted in humans. We will then highlight failure modes of devices during chronic in vivo implantation with specific examples reported from clinical use or clinical trials. We will also review failure modes associated with the development of novel implantable devices. With each failure mode, solutions arise to resolve the issues. We conclude with novel neural interfacing technologies and how they may be able to mitigate some of the issues experienced by traditional neural interface systems during long-term implantation.
I knew you were trouble
There are many reasons for the reduced effectiveness or even failure of implanted neural interfaces, including technological, mechanical, and biological barriers (the latter literally forms a barrier). Assuming the manufacturing process was consistent and of high quality and the surgical implant was free from iatrogenic damage to the device or recipient (see Barrese et al. 2013 for examples), there are still many points of failure for implanted neural interfaces. Characterization of failure modes for the different types of neural interfaces varies. Brain-computer interfaces (BCIs) using intracortical electrodes often have a reduced ability to record from neurons over time, leading many researchers to investigate why these interfaces have a limited lifetime (Barrese et al. 2013; Chestek et al. 2011; Colachis et al. 2021; Kozai et al. 2012b; Prasad et al. 2014). However, all neural interfaces pose challenges with long-term communication with the nervous system.
Delicate electronics
Implanted pulse generators and DAQs typically consist of a battery and electronic components. Fully implantable stimulators and recording DAQs allow the omission of transcutaneous wires, which can be a source of infection and fistula formation (DeMichele et al. 2014; Weir et al. 2009). However, this means that a revision surgery is required to replace the battery or unit for devices that do not have rechargeable batteries, or rechargeable batteries that eventually lose the ability to recharge. A recent study found that patients receiving DBS prefer fixed-life batteries compared to rechargeable because not having to recharge batteries impacts their lifestyle less (Khaleeq et al. 2019); however, this patient population is typically older and may not require revision surgery in their remaining lifetime. Another important factor to consider is that the risk of infection is higher for impulse generator replacement than the initial implant procedure (Pepper et al. 2013). Therefore, it is imperative that the electronic components are reliable and the battery lasts as long as possible.
Complex systems that require onboard control systems or signal processing will require more power, demanding more from the battery or may require a larger battery. Larger batteries will require larger housing, limiting the placement of the housing and possibly requiring longer lead wires between the housing and the electrodes. Large pulse generators and DAQ housing can also increase the risk of developing dermatitis or pressure sores that degrade the tissue surrounding the housing implant (Choi et al. 2021; Dujari and Gold 2019; Hamada et al. 2006). Severe pressure sores and wound complications such as hematoma, seroma, biofilm formation, skin erosion, and dehiscence occur in 1 – 27% of patients and can result in loss of skin over the pulse generator and even the need for explantation (Falowski et al. 2019; Hanna et al. 2024; Prabhala et al. 2023; Spindler et al. 2023; Xiao et al. 2024). Form factor and stiffness of the housing likely affect wound healing and the incidence of pressure sores; however, these factors are not reported, likely because the housing is identical to non-neural implants, including pacemakers (Clingan et al. 2020).
Notably, the largest part of the power budget is for wireless communication. Heating from data and power transmission can occur from both the RF coils and the implanted circuitry (Troyk and Rush 2009). Wireless transmission is also complicated by the desire to reduce the size of the implanted coil, as many designs seek to be compact and completely wireless, such as the floating microelectrode array for intracortical visual prostheses (Troyk et al. 2005) and peripheral nerves (Bredeson et al. 2015). These floating arrays have all electrodes, electronics, and RF coils onboard a single device. To minimize the implant fingerprint means using a small diameter (on the order of mm or smaller) implanted RF coil. The reduced size of the internal RF coil reduces the coupling of the coils, which then demands a higher intensity magnetic field and increases the power requirements (Nair et al. 2023; Troyk and Hu 2013). Power consumption needs to be considered for both external and implanted pulse generators and DAQs, as high power consumption reduces battery life and necessitates more frequent battery recharging or replacement.
Maintaining a hermetic seal with high-density feedthroughs is still a challenge facing implanted electronics. Hermetic seal failure can lead to a host of problems, including damage to electronic components, corrosion, short circuits, open circuits, current leakage, damage to or change in properties of wireless coil wires, and loss of amplifier sensitivity (Breach et al. 2010; DeMichele et al. 2013; Merrill 2014).
Lead wire damage can occur at implant, during the implant period, or upon removal. Many designs allow for bundling or coiling to provide strain relief, which is important for preventing dislodgement of the implants (Dadd et al. 2011; Greenberg et al. 2002; Marsolais and Kobetic 1986). However, lead wires are susceptible to mechanical fatigue from frequent bending, especially when the lead wires run through regions of the body subject to movement, such as the limbs (Pena et al. 2017; Phillips et al. 2004), the eyes (Ayton et al. 2014), the supraclavicular region (Mohit et al. 2004), and even the spinal cord (Toossi et al. 2017). Lead wire fractures are common in people with dystonic movement disorders (Yianni et al. 2004). Lead wire damage can induce cracks in the insulation, resulting in electrical leakage (Bredeson et al. 2013; Lyons et al. 2004; Prasad et al. 2014). Damage to lead insulation not only reduces the effectiveness of the device due to less current reaching the target tissue, but also poses a safety risk through off-target stimulation (Pena et al. 2017). Deinsulation of the lead wire can also be an issue, especially for shank electrodes (Prasad et al. 2014, 2012). Peeling of the insulation away from the tip of the electrode during insertion can increase mechanical damage to the tissue. Deinsulation also increases the surface area of the electrode, which can reduce specificity and change the expected electrochemical behaviour of the electrode. Lead wires are also susceptible to breakage, which results in an open circuit and could lead to device failure. Additionally, lead wire breakage can result in fragments remaining inside the body, as reported following the removal of sacral stimulation leads (Rueb et al. 2020).
Pad electrodes are at risk of delamination or loss of bonding from the carrier (Čvančara et al. 2020). Delamination can occur when the bond between the pad electrode has poor adhesion with the substrate or when liquid leaches in between the pad electrode and substrate (Dalrymple et al. 2019; Green et al. 2012; Prasad et al. 2014). Many electrodes, such as ring electrodes, some pad electrodes, or electrodes used for intracortical interfaces, require metal bonding or welding (Barrese et al. 2013). This junction is a potential source for discontinuity and may result in conduction failure due to an open circuit or result in current leakage. Furthermore, manufacturing differences have been identified as a source of failure for intracortical electrode arrays (Prasad et al. 2012). Deformities in the tips of the electrodes from laser cutting have occurred, as well as differences in the extent of the deinsulation of the wires, even in arrays manufactured in the same batch. These manufacturing defects led to insulation cracks and increased tissue response. Intracortical electrode arrays are quite brittle, especially those made of silicon or ceramic, and these electrodes must be handled with care during implantation (Barrese et al. 2013; Ward et al. 2009). Reducing the size of electrodes can increase specificity and reduce the implant profile in the tissue; however, smaller electrodes are more difficult to handle and are often extremely fragile. Additional challenges with small and high density electrodes are increased power and communication requirements (Troyk and Rush 2009), cross-talk, increased impedance (Nelson et al. 2017), and increased charge density during stimulation. Increased charge density can lead to focal tissue damage (discussed more below).
Electrode geometry influences the charge density during electrical stimulation. Electrodes with irregular geometries that are not spherical will have a non-uniform charge density (Bruckenstein and Miller 1970; Harnack et al. 2004). For example, electrode pads will accumulate charge on the edges (Wiley and Webster 1982), and penetrating electrodes will accumulate charge at the tip (McCreery et al. 2010). When charge is injected into the tissue through an electrode, the reactions at the electrode-tissue interface can be described as reversible or irreversible. Irreversible reactions lead to the electrolysis of water; the cathodic and anodic potentials that cause the electrolysis of water are known as the water window (Cogan 2008). Water hydrolysis results in the formation of hydrogen and oxygen gases, a pH change at the interface from hydroxyl ions, the formation of reactive oxidation species, and electrode dissolution and/or corrosion (Cogan 2008; Merrill et al. 2005; Shepherd et al. 2021). These reactions may lead to electrode failure, tissue reactivity, and necrosis. Using charge-balanced waveforms that are limited in potential according to the water window can help minimize irreversible reactions (Brummer and Turner 1977). However, focal areas of charge accumulation as a result of electrode geometry can lead to local irreversible reactions between the electrode and tissue. Furthermore, at areas of high charge density, local corrosion or tissue damage may occur (McCreery et al. 1990; Shepherd et al. 2021; Wiley and Webster 1982). Electrode corrosion is worse in the presence of reactive oxygen species (Patrick et al. 2011). Electrode corrosion can result in the dispersion of metal particulates into the surrounding tissue (Dymond et al. 1970; Patrick et al. 2011; Shepherd et al. 2021, 2020, 2019). Corrosion is not limited to stimulating electrodes. Recording electrodes can undergo corrosion due to material degradation by the foreign body tissue response (described below; Merrill 2010; Prasad et al. 2012). The presence and rate of corrosion is influenced by both the tissue environment and material. For example, Tungsten and stainless steel electrodes are more likely to corrode than Platinum-Iridium or Titanium electrodes (Cogan 2008; McCarthy et al. 2011; Patrick et al. 2011; Prasad et al. 2014, 2012). Platinum compounds, Tungsten ions, and Silver can all be cytotoxic, limiting the lifetime of the electrodes (Dymond et al. 1970; Patrick et al. 2011; Shepherd et al. 2021). However, Platinum is able to convert oxidative species to water, rendering the oxidative species inert and less dangerous (Patrick et al. 2011).
A treacherous environment
Any foreign material implanted in the body, including biocompatible materials, will evoke a foreign body response, which can reduce the efficacy of implanted neural interfaces. Additionally, with any surgical procedure, there is always a risk of infection. Infections following device implantation can result in biofilms forming on the implant, making clinical treatment difficult and could require device removal in addition to permanent tissue damage. The foreign body response, or tissue response, is the immune system’s rejection of a foreign body. The tissue response is also influenced by the extent of the trauma from insertion; less invasive, smaller devices will evoke a smaller tissue response. The failure of intracortical electrodes to record from single neurons long-term has been largely attributed to the tissue response of the brain (Moxon et al. 2009). The tissue response to implants in the central and peripheral nervous systems involve different immune cells and can be divided grossly into acute and chronic phases. The acute phase can also be separated into acute (within 24 h) and sub-acute phases (within a few days).
Central nervous system tissue response
The central nervous system (CNS) includes the brain, cerebellum, brainstem, and spinal cord. The CNS is contained within the blood–brain barrier (BBB), which separates the CNS from the vascular system. The BBB is composed and maintained by the neurovascular unit, which is comprised of endothelial cells (bound by tight junctions), pericytes, microglia, astrocytes, and neurons (Bennett et al. 2019; Hawkins and Davis 2005) (Fig. 5). The neurovascular unit provides a structural barrier and metabolic support to the CNS. Neural interface devices that target the CNS compromise the BBB during the implant procedure (Moxon et al. 2009). These include electrodes for DBS, intracortical recording and stimulation, and intraspinal microstimulation. Initial electrode insertion causes mechanical damage to neurons, myelin, and vasculature (Jorfi et al. 2015; Mirkiani et al. 2024). This disruption of the BBB and vasculature causes systemic immune cells such as macrophages to infiltrate the implant site (Fig. 6A). Macrophages can remain at the implant site chronically (McConnell et al. 2009). Factors released by immune cells can oxidize electrode surfaces and even create cracks in lead insulation (J. M. Anderson et al. 2008a, b; Kao et al. 1994). Red blood cells also enter the implant site, increasing iron levels in the neural tissue (Wang 2010). Hemolysis after bleeding releases more iron into the implant site. Iron is dangerous in neural tissue because it causes Fenton reactions (Goldstein et al. 2003), which lead to excitotoxicity (Regan and Panter 1996), as well as the formation of reactive oxygen species that cause oxidative stress and neuronal degeneration, injury, and death (Goldstein et al. 2003; Regan and Panter 1996; Ward et al. 2014).
In the sub-acute phase of the reaction to implants in the CNS, resident microglia become activated (Fig. 6B); they transition from a dormant surveyor cell to a phagocytic cell, cleaning cellular debris and producing proteins for iron storage (Dheen et al. 2007; McCarthy et al. 2018; Polikov et al. 2005). The activated microglia release pro-inflammatory factors such as reactive oxygen species, nitric oxide, and reactive nitrogen species, which contribute further to localized neural degeneration and death (Biran et al. 2005; Block et al. 2007), additional damage the BBB (Bennett et al. 2018), and degrade electrode materials (Takmakov et al. 2015). The pro-inflammatory factors released by the activated microglia lead to the migration and activation of even more microglia from the surrounding parenchyma (Hermann and Capadona 2018). Activated microglia typically stay within a 20–35 µm thick perimeter around the electrode in both brain and spinal cord implants (Ersen et al. 2015; McConnell et al. 2009), leading to an increased impedance and reduced efficacy of the implant. A leaky BBB allows further influx of macrophages from the circulatory system to infiltrate the implant site (Ravikumar et al. 2014). Macrophages are activated and release or initiate the synthesis of inflammatory factors and mediators such as reactive oxygen species, proteases, tumour necrosis factor (TNF)-α, interleukin (IL)-1-β, enzymes, acids, and nitric oxide in an attempt to and seek to destroy the implant (Bennett et al. 2019; Tresco and Winslow 2011). These factors released by macrophages are also neurotoxic and can induce tissue damage in the region surrounding the implant. Activated macrophages have been observed at the implant site into the chronic stage of the tissue response. When electrodes are implanted near a major blood vessel without damaging it, astrocytes and microglia activity is still increased (Kozai et al. 2012b). The implantation of microelectrodes leads to an up-regulation of chondroitin sulfate proteoglycans (CSPGs) at the electrode-tissue interface (Zhong and Bellamkonda 2007). CSPGs are a component of the extracellular matrix and inhibit neural regeneration in the tissue adjacent to the implant site (Hynds and Snow 1999; Kuffler et al. 2009), contributing to an increased impedance of the electrode-tissue interface, which reduces the signal-to-noise ratio for recording electrodes and limits the electric field for stimulating electrodes.
In the chronic phase of the tissue response to an implant in the CNS, which occurs within days to weeks, microglia are less prevalent and astrocytes become hypertrophic and migrate to the implant site (Hermann and Capadona 2018) (Fig. 6C). Astrocytes isolate the implant from the surrounding tissue by forming a fibrous capsule around the electrode, known as the glial scar (Biran et al. 2005; Turner et al. 1999). Electrode encapsulation is further supported by fibroblasts from the meninges, specifically the pia mater (Barrese et al. 2013). Gliosis also occurs along the electrode tract, but is similar for stimulating and non-stimulating electrodes in the spinal cord (Bamford et al. 2010). Electrical stimulation has been shown to dampen the tissue response to DBS electrodes (Lempka et al. 2009), but is dependent on stimulation parameters. The collective effects of the glial scar reduce the number of neurons via neuronal degeneration, ultimately reducing the signal-to-noise ratio and electric field strength.
Non-penetrating neural interfaces in the CNS also evoke a tissue response. Micro-ECoG arrays implanted on rat cortices become encapsulated with fibrous scar tissue from the meninges (Schendel et al. 2014). Retinal implants typically do not compromise the blood-retinal barrier and therefore are not susceptible to the negative effects of the systemic immune system and iron. However, retinal microglia respond to injury within minutes (Eter et al. 2008; Lee et al. 2008) and migrate to the implant upon contact (Opie et al. 2012); the rest of the typical CNS tissue response follows. Electrical stimulation on the cortical surface can evoke a tissue response, where the extent of fibrosis is proportional to the charge density (Brown et al. 1977; Dauth et al. 1977). Conversely, recording electrodes implanted endovascularly in the brain become integrated into the blood vessel wall over time, avoiding the tissue response of the CNS (Opie et al. 2017; Oxley et al. 2016).
Peripheral nervous system tissue response
The peripheral nervous system (PNS) includes the spinal and cranial nerves. The auditory nerve becomes a peripheral nerve as it enters the cochlea; cochlear implants activate auditory neurons via an electric field surrounding the electrodes and transmitted in the perilymph (i.e., cochlear implants do not directly interface with neurons). The tissue response in the cochlea also involves the same cells (macrophages) and reactions as the PNS (Foggia et al. 2019). The exception is a severe and abnormal tissue response to a cochlear implant: neo-ossification (Dalrymple 2021; Foggia et al. 2019; Nadol et al. 2014, 2001). Neo-ossification, or new bone growth, occurs in the cochlea due to severe insertion trauma (Bas et al. 2015). Neo-ossification can exacerbate the loss of residual hearing and reduce the efficacy of cochlear implants by forming a resistive barrier between the electrodes and the auditory neurons (Foggia et al. 2019).
Implanting a device in the periphery causes trauma and vasculature damage. Excessive bleeding can lead to a hematoma, which can increase the risk of infection. The initial response to a foreign body in the periphery is the adsorption of blood plasma proteins, including albumin, fibrinogen, fibronectin, kininogen, complement, γ-globulin, and vitronectin, onto the surface of the implant (J. M. Anderson et al. 2008a, b; Klopfleisch and Jung 2017). These proteins form a provisional matrix around the implant, which then develops into a thrombus and eventually into a fibrin clot.
The acute inflammatory response to implanted devices includes the infiltration of neutrophils (J. M. Anderson et al. 2008a, b; Bas et al. 2015; Fig. 7A). Neutrophils phagocytose debris and bacteria and enter the implant site within a few hours (Kastellorizios et al. 2015). In the sub-acute phase, mast cells enter the implant site and degranulate, releasing histamine and inflammatory cytokines (Tang et al. 1998; Fig. 7B). Histamine is also important for the recruitment of phagocytes such as neutrophils and macrophages to the implant site.
The presence of macrophages and lymphocytes mark the chronic phase of the tissue response (Fig. 7C). Macrophages and lymphocytes surround and adhere to the implant (Foggia et al. 2019; Klopfleisch and Jung 2017). Macrophages release several chemoattractants that further recruit more macrophages to the implant site (Broughton et al. 2006). As in the CNS tissue response, macrophages release factors and mediators that attempt degrade the implant. If the foreign body remains, macrophages can fuse together to form foreign body giant cells (FBGCs) (Klopfleisch and Jung 2017; Sheikh et al. 2015). FBGCs, if present, continue to release factors in an effort to completely break down the implant (Foggia et al. 2019; Henson 1971). In response to macrophage activation and the presence of FBGCs, fibroblasts and endothelial cells migrate to the implant site and proliferate (Foggia et al. 2019; Klopfleisch and Jung 2017). They release extracellular matrix proteins such as collagen to form granulation tissue around the implant. Over time, the granulation tissue forms an irreversible fibrous capsule around the implant (Lee et al. 2016), increasing the impedance of the electrode-tissue interface.
Nerve implants that do not penetrate the epineurium, such as cuff electrodes on the peripheral and vagus nerves, also induce a foreign body response, albeit milder than for penetrating electrodes (Rodríguez et al. 2000). A risk with cuff electrodes is that they are too tight around the nerve, inducing a compression injury that could lead to permanent nerve damage distal to the implant (Grill and Mortimer 2000). Additionally, the stiffness of the cuff electrode can influence the tissue response, with a greater tissue response occurring with more stiff electrodes (Stiller et al. 2019). A spiral cuff is used in clinical applications to reduce the risk of nerve compression and allows for short-term swelling of the nerve following initial implantation (Grill and Mortimer 2000; Naples et al. 1988). The tissue response to a cuff electrode includes encapsulation with macrophages, fibroblasts, and collagen, as well as focal regions with perineurial thickening, fibrosis of the endoneurium, thinning myelin, and reduced axonal density (Grill and Mortimer 2000; Payne et al. 2019).
Device encapsulation
Barring a continued inflammatory response and device failure, the final stage of the tissue response in both the central and peripheral nervous systems is device encapsulation. Encapsulation occurs because the immune cells are unable to digest the implant; instead, a protective barrier is formed to separate the device from the surrounding healthy tissue. As a result, the impedance at the electrode-tissue interface is elevated, but is typically stable (Dalrymple et al. 2020a; Groothuis et al. 2014; Jeffery et al. 2014; Wilk et al. 2016; Williams et al. 2007; Xu et al. 1997). Device encapsulation complicates the removal or replacement of implants or implant components because the scar tissue can integrate strongly to the device and surrounding tissues (Merrill 2014). However, there are benefits to encapsulation, including physical stability of the implant and protection from macrophage-secreted factors (Jorfi et al. 2015).
Micro- and macro-motion: all you had to do was stay
Migration of lead wires and implanted electrodes can occur if there is any tension on the lead wires, or in response to gravity (such as with SCS, DRG, or sacral stimulation electrodes) (Cameron 2004; Huygen et al. 2020; Lyons et al. 2004; Nanivadekar et al. 2023; Zbar 2014). Lead wire migration or even complete removal of electrodes can occur if the implant is not secured, leading to device failure. However, not all implanted devices require lead fixation; cochlear implants remain stable in the temporal bone and do not require additional fixation of the lead wires. Lead wire migration could possibly cause damage to nearby structures and warrant a revision surgery for removal or reimplantation of components. The physical stability provided by the tissue response can reduce the risk of lead migration and electrode removal, instead securing the devices in place. However, the tissue response around the implant can also increase stiffness of the lead wires and electrodes, compounding the risk of further tissue damage from movement. Tissue encapsulation around micro-implants, such as intracortical electrodes, can displace or extrude the implant, leading to a loss of neuronal recordings due to an increased distance from the electrode (Barrese et al. 2013; Rousche and Normann 1998).
Perpetual movement of an implanted neural interface relative to the tissue can evoke an ongoing tissue response. Movements can be divided into two categories: macro-motion and micromotion. Macro-motion is larger-scale movements of the implanted devices relative to the tissue. Examples include movements of the spinal cord relative to the spine, which could affect the mechanical and electrode stability of intraspinal electrodes (Toossi et al. 2017), or intramuscular or intrafascicular electrodes shifting relative to muscles during limb movements (Pena et al. 2017). Relative movements between the tethered fixation points of the implanted devices and the tissue can lead to lead wire tension and, in extreme cases, partial or complete removal of the implant (Biran et al. 2007; Kim et al. 2004). Furthermore, as mentioned above, repeated bending and tension on the lead wires can induce metal fatigue and fracture, ultimately causing lead wire breakage.
Micromotions are more subtle movements of the tissue relative to the implanted shank or electrodes. Micromotion can be caused by respiration, heartbeat, changes in blood pressure, changes in cerebrospinal fluid (CSF) pressure, and general movements within the interstitial space (Kozai et al. 2015; Mahajan et al. 2020). Tissue damage occurs during micromotion due to a mechanical mismatch between stiff shanks and electrodes and the soft tissue (Barrese et al. 2013; Goldstein and Salcman 1973; Groothuis et al. 2014; Subbaroyan et al. 2005). Micromotion can induce compression or shearing of surrounding neural tissue (Cheung 2007), inducing a more vigorous tissue response (Kim et al. 2004). If electrodes are sharp, micromotion produces the strongest tissue response and gliosis at the tips (Edell et al. 1992; Kozai et al. 2015; McCreery et al. 2010). The tips themselves undergo changes in their structure and function due to micromotion, including deterioration and recessing, which results in a loss of recording signal over time, and insulation cracks or peeling away from the shank, which can reduce the specificity of the recording (Kozai et al. 2015; Prasad et al. 2012). Micromotion of an implanted device in the spinal cord is more harmful than in the brain, likely due to relative size (Ersen et al. 2015).
Neuron degeneration and loss near the implant site has been extensively studied in the cortex due to the high failure rate of intracortical recording electrodes. Electrode insertion, the tissue response, and micromotion contribute to neuronal loss surrounding an implanted electrode (Biran et al. 2007, 2005; Jorfi et al. 2015; Moxon et al. 2009; Prasad et al. 2012), with the largest loss of neurons occurring shortly after the implantation of the electrode array (Winslow et al. 2010). Neuronal loss can continue for the duration of the implant due to local, chronic inflammation, inducing a focal neurodegenerative state (McConnell et al. 2009). Explanted intracortical electrodes can be surrounded by densely packed layers of activated microglia (Szarowski et al. 2003; Turner et al. 1999), with the density of microglia inversely correlated with the neuronal density surrounding the electrode (Biran et al. 2005). In both stimulating and recording electrodes, there is more gliosis and neuronal loss near the electrode tip due to micromotion (Edell et al. 1992; Kozai et al. 2015; McCreery et al. 2021, 2010). As the radial distance away from the tip increases, so does the neuronal density (McCreery et al. 2010). There are also fewer and altered synapses adjacent to the glial scar (Schultz and Willey 1976). Reduced neuronal density near a microelectrode is detrimental to single unit recordings in particular, because neurons need to be within 130 µm of the recording site to be identified (Polikov et al. 2005). It has been suggested that neurons migrate away from the implant site (Collias and Manuelidis 1957; Liu et al. 1999); however, another study failed to find an increased neuronal density further away from the implant site, suggesting that neuronal loss, rather than migration occurs (Biran et al. 2005).
End game: clinical implications of device failure
Implanted neural interfaces are designed to treat neurological disorders. When these devices fail, either technologically or biologically, there are clinical consequences. These clinical consequences can include the loss of therapeutic efficacy and return of symptoms or dysfunction, but can also include new clinical complications that are a direct result of the implanted device failure, including off-target effects, infection, and tissue damage. Complications, or adverse events, are reported to the United States Food and Drug Administration (FDA) and classified as either Serious Adverse Events (SAEs) and Adverse Events (AEs) (FDA 2024). However, the lines between SAEs and AEs are often blurry and inconsistently reported in literature and by hospitals (Barlas 2017; Gagliardi et al. 2018; Tilz et al. 2024). Medical device failures are documented in the Manufacturer and User Facility Device Experience (MAUDE) Database (Health 2024). However, this includes all medical devices, not just implanted neural interfaces. If device malfunction occurs repeatedly, it can lead to recalls by the FDA (FDA 2025a, 2025b, 2023, 2019). Table 2 summarizes the reported rates of clinical complications related to the failure of implanted neural interfaces.
When a complication arises from failure of an implanted neural interface, it is important to understand how severe the complication is, so that the treating clinicians can determine the most appropriate treatment. There is a need for a clear guide to aid clinical decision making according to the severity of the failure. In Table 3, we have created such a guide by adapting the Clavien-Dindo grading system for surgical complications (Dindo et al. 2004). The examples provided were collected from the former sections, as well as from the troubleshooting algorithm developed by (Zbar 2014).
Long live: chronic testing to improve device longevity
Often, the cause and effect of failure modes of implanted neural interfaces cannot be delineated between technological and biological factors. Additionally, a combination of failure modes can occur simultaneously. Therefore, redundancy and improved manufacturing processes are necessary to ensure reliability of implanted neural interfaces for the lifetime of the device user. Reliability is determined via the characterization of the technological and biological failure modes. This process typically and should entail benchtop testing, followed by acute and most importantly, chronic testing of implanted devices (Dalrymple 2021; Henderson et al. 2006; Pena et al. 2017; Shepherd et al. 2018). Computational modeling can also be used to predict and identify failure modes of implanted devices (Henderson et al. 2006; Jorfi et al. 2015; Subbaroyan et al. 2005). With in vivo testing, it is important to have clinically-relevant animal models for testing novel implanted neural interface systems. It is equally important to use electrode and implant assemblies that closely resemble the form factor and materials used in the proposed implant.
Several testing methods can be used to minimize or eliminate failure modes, or, if not out of the woods, can be used to study the mechanisms of failure and monitor the implant (Fig. 8). Lead wires are prone to breakage; therefore, extensive benchtop fatigue testing is necessary prior to implantation. Fatigue testing is an accelerated process that entails repeatedly bending lead wires until lead breakage or cracks in the insulation occur (Harris et al. 2016; Pena et al. 2017; Fig. 8A). Neural interfaces that have been implanted in people, such as DBS (Jiang et al. 2015), SCS (Henderson et al. 2006), and LIFEs (Pena et al. 2017) have reports characterizing their benchtop fatigue testing. The American Society for Testing Materials (ASTM) International has a standardized protocol for fatigue testing (ASTM 2020).
Overview of testing methods used to evaluate implanted neural interface systems. Benchtop methods include the adhesion test of the electrode material, accelerated aging of the implanted portion of the device, electrochemical measures such as CSC, CIL, EIS, and common-ground impedance, fatigue testing of lead wires, and SEM of the electrode surface. In vivo testing includes testing serum and CSF samples, electrochemical measures, and electrophysiology of evoked responses. Post-explant testing includes electrochemical measures on the explanted electrodes and SEM of the electrode surface. Post-mortem analysis includes trace analysis and histological examination of tissues
Coatings on electrode surfaces are at risk of delaminating; therefore, their adhesion must be tested prior to active in vitro or in vivo studies. The adhesion-by-tape test (ASTM 2022) is a simple yet effective method for testing the adhesion of electrode coatings (ASTM 2022; Dalrymple et al. 2019; Green et al. 2012; Fig. 8A). Coating material loss can be quantified following inspection using scanning electron microscopy (SEM; Čvančara et al. 2020; Dalrymple et al. 2019; Green et al. 2012; Fig. 8A,C). SEM can also be used to visualize damage to insulation or electrode tips, such as cracking, peeling, corrosion, or breakage (Prasad et al. 2012).
Accelerated aging is a benchtop process whereby electrodes are housed (passive) and/or stimulated continuously (active) in a saline-like solution at an elevated temperature (body temperature or higher; Fig. 8A). Accelerated aging protocols mimic the physiological environment but on a faster timescale (ASTM 2021; Hukins et al. 2008). The saline-like solution can be comprised of saline, phosphate-buffered saline (PBS) (Noller et al. 2019), artificial CSF (Vara and Collazos-Castro 2019), contain proteins such as bovine serum albumin, or contain reactive chemicals such as hydrogen peroxide, which mimics reactive oxygen species (Street et al. 2018; Takmakov et al. 2015). Accelerated aging protocols have been applied to many types of implanted neural interfaces, both clinically available devices and prototypes with novel electrode materials or coatings, including but not limited to functional neuromuscular stimulation devices (Smith et al. 1987), intracortical electrodes (Patrick et al. 2011; Street et al. 2018; Takmakov et al. 2015; Venkatraman et al. 2011), floating microelectrode arrays (Bredeson et al. 2013), cochlear electrodes (Dalrymple et al. 2019), and retinal prostheses (Lemoine et al. 2020). Accelerated aging can also be used to test novel hermetic packaging technologies (Nagarkar et al. 2017). Following the accelerated aging protocol, the electrode surface is often imaged using SEM to inspect for corrosion of the electrode surface or delamination of coatings, the solution is examined using mass spectroscopy for particulates of the electrode or coating material, the device is checked for open or short circuits, and/or the electrodes are tested using various electrochemical measures (Dalrymple et al. 2019).
Electrochemical measures describe the safety and effectiveness of an electrode to conduct and/or deliver charge at the electrode-tissue interface (Fig. 8A-C). Electrochemical measurements can be acquired benchtop using three electrodes: the working, reference, and counter electrodes in a saline-like solution (Cisnal et al. 2018; Cogan 2008; Dalrymple et al. 2019) or in vivo (Lempka et al. 2009; Shepherd et al. 2021). Charge storage capacity (CSC) is the amount of charge that can be stored in reversible reactions, i.e. without exceeding the water window (Merrill et al. 2005). The CSC is measured using cyclic voltammetry, where the electrode potential between the working and counter electrode is slowly cycled between the water window limits (Cisnal et al. 2018; Cogan 2008). The CSC depends on the electrode geometric surface area, material, electrolyte composition, and waveform parameters. It is desirable to have a large CSC such that more charge can be injected safely into the tissue to excite neurons. The charge injection limit (CIL) is the maximum amount of charge that can be injected into the tissue in reversible reactions during a stimulation pulse (Cisnal et al. 2018; Dalrymple 2021). The CIL is determined using voltage transients, where biphasic, charge-balanced, cathodic first pulses are delivered through the electrode at a constant pulse width and increasing current amplitudes (Lee et al. 2016). Impedance is typically measured using one oftwo methods: common ground impedance and electrochemical impedance spectroscopy (EIS). Common ground impedance entails measuring the voltage resulting from a small current stimulus and calculating the corresponding resistance using Ohm’s law (Shepherd et al. 2021). For optimal recording performance and high electrode yield, it is best if the electrode impedance is in the 2 to 150 kΩ range (Chen et al. 2022; Fu and Rutishauser 2025; Prasad et al. 2012); however, these values may vary for different applications. EIS produces a more comprehensive measure of impedance across a range of frequencies (Cogan 2008). EIS magnitude and phase values can be used to generate an equivalent circuit model, of which there are several types (Lempka et al. 2009; Lisdat and Schäfer 2008; Shepherd et al. 2021; Wei and Grill 2009). The components of the equivalent circuit model indicate both electrode and tissue behaviour.
Acute and/or chronic in vivo testing in animal models should follow benchtop testing to ensure the implanted devices can survive a more realistic environment (Fig. 8B). Much of the time, chronic in vivo testing is performed over a period of months, but can be executed for years in larger animal models (Barrese et al. 2013; Chestek et al. 2011; Christensen et al. 2014; Grill and Mortimer 2000; Jeong et al. 2015; Kane et al. 2013; Kozai et al. 2015; Lago et al. 2007; Nayagam et al. 2014; Opie et al. 2018; Oxley et al. 2016; Payne et al. 2018; Rodríguez et al. 2000; Sahasrabuddhe et al. 2021; Shepherd et al. 2021; Stock et al. 1979). Longer durations of chronic in vivo testing provide valuable insight into the device performance and tissue reaction to implants over a time-frame that more closely matches the duration in human implementation. Furthermore, the tissue response after several months is expected to be stable, entering the device encapsulation stage described above. However, long-duration chronic in vivo testing is costly, and investigators must balance resource availability with the gain of information from longer duration implants.
The location, size of the implant, and electrode geometry should scale to the animal model for the most accurate testing for the proposed clinical application. During and following the chronic implantation period, the implanted devices are characterized by how well they function and whether or not they maintained their physical integrity. For example, electrochemical measures can be used to track changes at the electrode-tissue interface over time (Abidian et al. 2010; Dalrymple et al. 2020b, 2020a; Jeong et al. 2015; Kane et al. 2013; Opie et al. 2016; Shepherd et al. 2021). Electrode corrosion or metal dissolution causes pitting on the electrode surface, increasing the surface area (Prasad et al. 2012; Shepherd et al. 2021). This increase in surface area results in an increased CSC, and can also reduce the impedance (Dalrymple et al. 2020b, 2020a; Merrill et al. 2005; Shepherd et al. 2021).
Insulation damage can result in a decreased impedance, due to an increased surface area of the conductive electrode (Prasad et al. 2014). Daily fluctuations in impedance can occur, likely also influenced by the tissue response to the implant, transient bleeding, and edema (Groothuis et al. 2014; Prasad et al. 2012). During current-controlled stimulation, a higher electrode impedance demands more power from the pulse generator because an increased stimulation amplitude is required to excite the same neurons (Butson et al. 2006). Continued increases in stimulation amplitude to maintain efficacy has been reported for DBS (Krack et al. 2002; Yamamoto et al. 2004).
For devices that transfer power wirelessly through the skin, such as cochlear implants, power transmission is limited by the wireless components and safety standards. Therefore, an increased power demand due to high electrode impedances may not be possible. While recording neural activity, the impedance can greatly impact the signal-to-noise ratio (Chen et al. 2022; Chu et al. 2012; Chung et al. 2015; Groothuis et al. 2014); a high impedance (> 1.5 MΩ) reduces the yield of single units recorded (Prasad et al. 2014). Periodic electrochemical assessment can inform on the state of the electrode-tissue interface and be used to explain changes in required stimulation amplitude to be effective. Characterizing chronic implants in vivo can reveal challenges that were not identified in benchtop or acute testing, especially those related to the tissue response or the delamination of electrode coatings (Abidian et al. 2010; Čvančara et al. 2020; Dalrymple et al. 2020b, 2020b; Green et al. 2012). Sometimes, the results of the chronic in vivo testing require a change in design, and begin the testing again, to ensure optimal biocompatibility and longevity. Therefore, these chronic in vivo studies must be performed to ensure that there are no surprises come time to translate these implants to clinical application.
Several electrophysiological measures can be used to monitor the implanted neural interface and how well it is interacting with neurons (Fig. 8B). In general, a decaying or loss of signal from recording neural interfaces can easily be measured over time, such as intramuscular EMG electrodes (DeMichele et al. 2013), ECoG arrays (Baek et al. 2014), or intraspinal electrodes (Greenspon et al. 2019). For stimulating electrodes, either the electrodes need to be connected to a recording device such that single units or local field potentials can be recorded through the stimulating electrodes, or recording electrodes are placed elsewhere along the neuraxis to measure an evoked response (McCreery et al. 2004; Prasad et al. 2012). Examples of evoked responses include evoked auditory brainstem responses (EABRs) elicited by stimulation through cochlear implants (Dalrymple et al. 2020a, 2020b; Shepherd et al. 2020), or evoked compound action potentials (ECAPs), which can be evoked by stimulating the DRG, vagus nerve, spinal cord, and periphery, and recorded from the peripheral nerves, vagus nerve, or spinal cord (Calvert et al. 2022; Dalrymple et al. 2021; Fisher et al. 2014; Payne et al. 2020; Shulgach et al. 2021; Ting et al. 2024). Chronic animal studies should monitor the natural and electrically-evoked neural activity longitudinally to ensure that the target neural population is being recorded/stimulated. In humans, patients may be able to report a response. For example, patients with a cochlear implant can report whether they can hear during stimulation, or retinal prosthesis users can report seeing phosphenes.
Blood serum and CSF samples can be extracted and analyzed throughout the duration of an implant to monitor the inflammatory response (Prasad et al. 2012; Fig. 8B). For example, phosphorylated neurofilament heavy subunit (pNF-H) is a biomarker for axonal injury that can be detected in both blood and CSF in response to ongoing axonal damage (K. J. Anderson et al. 2008a, b; Prasad et al. 2012; Shaw et al. 2005). Sustained and fluctuating elevated levels of pNF-H has been found following chronic implantation of intracortical electrodes in rats, indicating ongoing axonal damage (Prasad et al. 2012). Additionally, cytokine biomarkers that have been identified in CSF and serum samples in response to a spinal cord injury, such as IL−6, IL-8, monocyte chemoattractant protein (MCP)−1, tau, glial-expressed protein S100β, and glial fibrillary acidic protein (GFAP) (Kwon et al. 2010), may be useful to determine ongoing inflammation in response to electrodes implanted in the spinal cord. At the conclusion of the implant testing duration, tissue surrounding the implant as well as organs responsible for filtering toxins, such as the kidneys and liver, can be tested using trace analysis for metal or polymer particulates that may have originated from the electrodes (Shepherd et al. 2021; Fig. 8C). Furthermore, the tissue surrounding the implant can be excised, sectioned, and examined histologically for the presence and activation of immune cells (Dalrymple et al. 2020a, 2020b; McCreery et al. 2010; Nayagam et al. 2014; Schendel et al. 2014; Fig. 8C).
When neural interfaces are implanted into people, they can be monitored over the duration of the implant using the aforementioned methods, especially impedance or evoked response testing (Fisher et al. 2009). Early feasibility and first-in-human trials aim to assess the safety and efficacy of implanted neural interfaces (Ayton et al. 2014; Bergey et al. 2015; Čvančara et al. 2020; Hochberg et al. 2006; Kilgore et al. 2003; Mitchell et al. 2023). In the rare instances that implanted electrodes are explanted, the electrode surface and electrochemical behaviour can be characterized (Woeppel et al. 2021; Fig. 8C). Otherwise, investigating how the implanted neural interfaces interact with the tissue or inspecting the electrodes for corrosion is done post-mortem (Haberler et al. 2000; Moss et al. 2004; Nadol et al. 2014; O’Malley et al. 2017; Szymanski et al. 2021; Towle et al. 2020). Post-mortem examination of tissue is extremely informative because it reveals the tissue response and electrode integrity after lifetime use of the implant (Fig. 8C).
Wildest dreams: the future of implanted neural interfaces
The therapeutic successes of many implanted neural interfaces have sparked a dynamic industry (Weber 2020) as well as many thematic funding opportunities, including ElectRx, BG + , ReNet, N3, NESD, RAM, SUBNETS, TNT, and HAPTIX by the Defense Advanced Research Projects Agency (DARPA) and other major funding agencies such as the National Institutes of Health (NIH) and Department of Defense (DoD) in the United States of America. With technological advances in nanoengineering, materials science, electromagnetism, and optogenetics, the future of implanted neural interfaces is bigger than the whole sky, but not untouchable.
Through chronic in vivo experiments, failure modes of implanted neural interfaces can be identified, and innovative solutions can be applied to ameliorate them. As described, many different animal models have been used for preclinical testing of implanted neural interfaces. Mouse models for implanted neural interfaces open many doors of investigation. For example, to better understand the specific genes, enzymes, and cellular signalling pathways that may influence the performance of the neural interfaces, transgenic mouse models have been developed (Bedell et al. 2018a, 2018b; Hermann et al. 2018b, 2018a; Kozai et al. 2014b). Furthermore, 2-photon microscopy can be used to perform live imaging of the mouse brain, particularly to study the live tissue response to intracortical electrodes (Kozai et al. 2012b, 2016). Mouse models also enable the use of optogenetics, which can be used to locate specific cell types responsible for the recorded electrophysiological behaviour (Anikeeva et al. 2011; Park et al. 2017; Pashaie et al. 2014). Mouse models for studying implanted neural interfaces can be challenging, especially with the size limitations; however, a recent study showed that the strain on cortical tissue from a microelectrode implant was no different in a mouse compared to a rat model (Mahajan et al. 2020).
Surgical approaches and implantation techniques can be modified to invoke less trauma to the tissue. For example, delivering electrodes by injecting them through a syringe, such as with the Injectrode (Dalrymple et al. 2021; Trevathan et al. 2019) or ultra-flexible mesh electronics (Fu et al. 2017; Hong et al. 2018; Liu et al. 2015), can both quicken the implant procedure time and reduce the trauma to surrounding tissues. Additionally, updated methods for securing lead wires can be improved to reduce lead migration, cracks in insulation, and infections, as has been demonstrated for DBS implants (White-Dzuro et al. 2016). Improved materials, such as alginate hydrogel, have improved the seal in the dura mater following electrode implantation (Nunamaker and Kipke 2010). Intracortical and ECoG recordings require the removal of a portion of the skull to implant the electrodes and depth electrodes require small holes to be drilled into the skull for insertion. An alternative recording device, the Stentrode, is implanted endovascularly near the motor cortex, reducing both the surgical trauma and avoiding the tissue response from the brain (Oxley et al. 2020, 2016). However, one downside to techniques such as the Stentrode or ECoG are that the electrodes are at a greater distance from the neurons; therefore, they record local field potentials rather than individual neuron spikes. This may limit the specificity and degrees of freedom in the recordings of these techniques, but new signal processing methods and decoders have demonstrated the utility of these technologies (Forsyth et al. 2019; Luo et al. 2022; Volkova et al. 2019).
Wireless communication and power transfer between external and internal components or between the stimulator and electrode can reduce the incidence of lead wire breakage. However, as reviewed above, wireless methods are not without limitations. Innovative methods to transfer data and/or power are being developed to mitigate issues related to heating, overlap requirements, transmission efficiency, and form factor (Robinson et al. 2024). These technologies leverage RF and inductive coupling, volume conduction, ultrasound, optics, and magnetoelectrics (Becerra-Fajardo et al. 2024; Benedict et al. 2022; Kim et al. 2023; Lee et al. 2021; Tawakol et al. 2024), including neural dust for recording from peripheral nerves (Seo et al. 2016). Additionally, battery-free technologies that harvest energy from the body are under development to facilitate distributed networks of implanted neural interfaces that do not require charging or battery replacement (reviewed in Nair et al. 2023).
Reducing the stiffness of hermetic packaging, lead wires, and electrodes has also been explored to reduce failure of implanted neural interfaces. Reducing the stiffness of implanted devices to more closely match that of the surrounding tissue leads to a reduced inflammatory response (He et al. 2020; Jorfi et al. 2015; Patel and Lieber 2019; Sohal et al. 2016). Flexible hermetic packaging made from silicone, polydimethylsiloxane (PDMS), parylene, polyimides, epoxies, polyurethanes, and liquid crystal polymers have been explored as an alternative to the conventional titanium packaging (Hassler et al. 2011; Jeong et al. 2015; Nagarkar et al. 2017; Rubehn et al. 2009). However, many of these polymeric materials are porous to water vapour and degrade under physiological conditions (Hassler et al. 2011; Traeger 1977).
Low stiffness materials have also been used for electrodes and arrays (Fekete and Pongrácz 2017). For example, electronic dura (e-dura) is an array capable of recording, electrical stimulation, and chemical injection, and has the same elasticity as the dura mater (Minev et al. 2015). Other flexible arrays for SCS have been developed and tested in rats (Hogan et al. 2021) and flexible microscale wires have been implanted in the brain of mice for recording (Yin et al. 2022). Flexible microelectrode arrays have been developed and tested in slug DRG (Sperry et al. 2018) as well as rodent brains (Harris et al. 2011b; Zhao et al. 2022). Flexible depth electrodes have been implanted in the brains of small and large animal models (Lee et al. 2024). Intrafascicular electrodes typically use stiff needles (Badia et al. 2011); more recent designs utilize microneedles embedded in soft silicone, resulting in stretchable and flexible intrafascicular electrodes for recording from peripheral nerves (Yan et al. 2022). Novel polymeric materials can be used for electrodes on peripheral nerve cuffs, enabling them to stretch with the cuff (Cuttaz et al. 2021). Arrays with multiple penetrating electrodes and flexible bases can reduce the relative motion of the electrodes (Khaled et al. 2013). Flexible electronics using nanotechnologies have been used for detecting biomarkers (Farsinezhad et al. 2013; Yan et al. 2021), intracellular recording and stimulation (Robinson et al. 2012), and intracortical recording (Zhao et al. 2019, 2017).
Coatings on electrodes and shanks can be used to improve acceptance. Conductive hydrogel coatings applied to cochlear implants (Dalrymple et al. 2020b), DBS electrodes (Hyakumura et al. 2021), and electrodes implanted in the auditory cortex (Kim et al. 2010) reduce the stiffness and impedance of the electrode. Hydrogel electrodes have also been used for flexible cuff electrodes around the cervical vagus nerve to allow for adjustments in diameter of the cuff (Horn et al. 2021). Mechanical insertion damage can be reduced by using less stiff electrode and shank materials; however, they need to be stiff enough to penetrate tissue but not too stiff that causes excessive damage. One solution to this problem is to use a stiff implant carrier that dissolves away, such as carboxymethyl cellulose (Gilgunn et al. 2012; Kozai et al. 2014a), resorbable polymers (Lewitus et al. 2011), or polyethylene glycol (Kato et al. 2006), leaving behind flexible electrodes. Another option is to use a stiff implant carrier that is removed, leaving the softer electrode behind (Ferro et al. 2018; Hanson et al. 2019; Kozai and Kipke 2009; Musk and Neuralink 2019; Williamson et al. 2015). Furthermore, temperature-sensitive and mechano-sensitive polymers that soften at physiological temperatures (Capadona et al. 2008; Hess et al. 2013; Ware et al. 2014) can reduce the loss of neuronal density near the device (Harris et al. 2011a) as well as reduce tissue deformation (Garcia-Sandoval et al. 2018). Similarly, shape memory polymers that soften in vivo have been explored to reduce the stiffness of neural implants (Sharp et al. 2006; Ware et al. 2014).
Novel electrode and array geometries that are porous or latticed have been designed with the intention of integrating the device with the tissue. For example, micro-ECoG arrays constructed with a mesh-like substrate showed a reduced thickness of meningeal tissue growth between the array and the neural tissue (Schendel et al. 2014). The holes in the mesh enabled revascularization of the tissue around the device. Several designs for intracortical probes with porous structures have been developed to allow neural, connective, and vascular tissues to grow through the pores instead of encapsulating the device (Kang et al. 2011; Seymour and Kipke 2007, 2006; Xie et al. 2015). Similar neurovascular integration has been achieved with a porous peripheral neural interfaces as well (Veith et al. 2021). However, removal of these integrated devices in the event of failure or infection may lead to excess tissue damage.
The acceptance of an implant by the surround tissue can be enhanced using coatings that are bioactive (Chapman et al. 2020; Klopfleisch and Jung 2017; Rousche et al. 2001). Bioactive refers to using coatings that control or calm down the intrinsic tissue response. Bioactive coatings may contain peptides that promote neurite outgrowth (Green et al. 2009) and reduce microglia activation and migration (Azemi et al. 2011; Sridar et al. 2017), reduce protein fouling (Golabchi et al. 2019; Kozai et al. 2012a; Rao et al. 2012), release anti-inflammatory agents (Gaire et al. 2018; Kim and Martin 2006; Krukiewicz et al. 2019; Wadhwa et al. 2006; Zhong and Bellamkonda 2007, 2005), prevent glial scar formation (He et al. 2006; Massia et al. 2004; Tien et al. 2013), catalyze reactive oxygen species (Potter-Baker et al. 2014), or release trophic factors to attenuate neural degeneration (Chikar et al. 2012; Kato et al. 2006). Neural interfaces can also host microfluidic systems for delivering factors that reduce the tissue response (Altuna et al. 2013; Frey et al. 2018; Takeuchi et al. 2005). Not all implants need to remain implanted forever and always; temporary monitoring of intracranial pressure or evoked potentials could be realized through resorbable biosensors (Kang et al. 2016). Resorbable biosensors make use of materials such as poly(lactic-co-glycolic acid) (PLGA), nanoporous silicon, magnesium foils, and silicon dioxide that undergo hydrolysis during implantation, dissolving after approximately four to five weeks (Gentile et al. 2014).
Stimulation safety limits ensure that the electrode polarization does not exceed the water window. However, the recommended stimulation safety limits were derived from a study that chronically implanted platinum electrodes that were stimulated over a few hours into brain tissue (McCreery et al. 1990). Because the central and peripheral nervous systems have different immune cells, hence different tissue responses to implanted devices, stimulation safety limits should be determined independently for each region of the body. For example, high charge stimulation (exceeding the stimulation safety limits) of the cochlea did not result in neuronal death (Shepherd et al. 2021) but did result in corrosion of platinum from the electrode, and platinum particulates in the tissue capsule. Therefore, new materials need to be developed that can tolerate high charge stimulation such that stimulation limits can be identified for all interface sites. Many new materials have been designed with the goal of reducing electrode impedance, which allows for more and smaller electrodes, and a wider stimulation range, which can improve selective activation of neurons (Ludwig et al. 2011). For example, high surface area materials such as reduced graphene oxide, conductive hydrogel, and electrodeposited Platinum-Iridium have been explored for reducing the impedance of cochlear electrodes (Dalrymple et al. 2020a, 2020b, 2019). Furthermore, many different Poly(3,4-ethylenedioxythiophene) (PEDOT) formulations have been developed and tested for intracortical electrodes (Ganji et al. 2018; Ludwig et al. 2006; Seymour et al. 2011; Venkatraman et al. 2011), intraspinal microstimulation (Vara and Collazos-Castro 2019), and peripheral nerve cuffs (Lee et al. 2016).
The other side of the door: data storage and programming considerations
In addition to addressing the biological and hardware-related failure modes, there are software and data-related concerns that are important to consider in the development, optimization, and translation of implanted neural interfaces. Modern and future implanted neural interfaces seek to interface with more neurons, which demands more electrodes that are smaller and more selective in their recordings and/or activation. With this increased demand, the complexity of both processing recordings and delivering stimuli increases. More sophisticated programming methods are needed, beyond the simple input–output and closed-loop systems currently in use. Neurons can be more precisely activated during stimulation by improving both spatial and temporal targeting. Spatial methods manipulate the strength and shape of the electric field to specify which neurons are activated. The electric field can be adjusted by changing the stimulation amplitude, pulse width, and pulse train frequency, as is common with modern devices. Electrode size, number, configuration (e.g., multipolar), and current steering methods can shape the electric field to optimally and precisely activate neurons (Dumm et al. 2014; Mishra et al. 2023; Tebcherani et al. 2024). Typical stimulation methods activate neurons synchronously, which is not how neurons naturally fire. Neurons can be activated more closely to their natural firing patterns using biomimetic stimulation, which entails modulating both amplitude and frequency of stimulation pulses (Formento et al. 2020; Okorokova et al. 2018).
Strategies to control the timing or intensity of stimulation determine when and how many neurons are activated. While current clinical devices have relatively simple control strategies that are often open-loop, closed-loop control is become more common. Closed-loop methods use recorded signals (for example, ECAPs) to improve the effectiveness and efficiency of the stimulation method (Brooker et al. 2021; Kuo et al. 2018). Control algorithms can be made more personalized and powerful with the use of machine learning (Dalrymple et al. 2020c; Dalrymple and Mushahwar 2020; Desautels et al. 2015). Informative and real-time signals are required to inform control strategies, which can be achieved through onboard sensing and processing of biosignals, and neural decoding methods.
With the gathering of large amounts of neural data, security concerns arise, particularly with how the data are transferred and stored (Jiang et al. 2023; Maiseli et al. 2023). Cloud-based data storage and computing, as well as the use of AI-methods such as large language models to interpret data are growing in popularity and present concerns with personal health information. Methods for enhancing security and ensuring ethical data handling must continually adapt alongside rapid technological advancements. Moreover, policies governing the approval and regulation of implanted neural interfaces need constant updating to align with these evolving developments.
Conclusions
Long story short, neural interfaces implanted throughout the body have demonstrated great success in treating a growing variety of conditions. Despite these successes, the longevity of implanted neural interface systems are impeded by mechanical, technological, and biological barriers. Mechanical and electronic failures can occur in any of the components of the implanted system. The immune response to an implanted neural interface consists of acute and chronic phases and differs between the central and peripheral nervous systems. Advances in material science and engineering are actively working to reduce the tissue response to implanted neural interfaces by reducing their size and stiffness as well as by using factors to reduce inflammation. Cycles of improving these devices and materials with chronic in vivo testing is needed to thoroughly test new systems prior to clinical translation to ensure their long-term biocompatibility for human implantation.
Data availability
No datasets were generated or analysed during the current study.
References
Abidian MR, Corey JM, Kipke DR, Martin DC. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small. 2010;6:421–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/smll.200901868.
Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Sweet JA, Hoyen HA, Keith MW, Peckham PH, Simeral JD, Donoghue JP, Hochberg LR, Kirsch RF. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389:1821–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(17)30601-3.
Al-Kaisy A, Royds J, Costanzi M, Racz G, Wesley S, Palmisani S, Pang D, Yearwood T. Effectiveness of “Transgrade” epidural technique for dorsal root ganglion stimulation. A retrospective, single-center, case series for chronic focal neuropathic pain. Pain Physician. 2019;22:601–11.
Altuna A, Bellistri E, Cid E, Aivar P, Gal B, Berganzo J, Gabriel G, Guimerà A, Villa R, Fernández LJ, Menendez de la Prida L. SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip. 2013;13:1422–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1039/c3lc41364k.
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008a;20:86–100. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.smim.2007.11.004.
Anderson KJ, Scheff SW, Miller KM, Roberts KN, Gilmer LK, Yang C, Shaw G. The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of traumatic brain injury. J Neurotrauma. 2008b;25:1079–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/neu.2007.0488.
Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, Ferreira CK, Harkema SJ. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018;379:1244–50. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa1803588.
Anikeeva P, Andalman AS, Witten I, Warden M, Goshen I, Grosenick L, Gunaydin LA, Frank LM, Deisseroth K. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci. 2011;15:163–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nn.2992.
ASTM. ASTM F1980–21: standard guide for accelerated aging of sterile barrier systems and medical devices. 2021. https://www.astm.org/f1980-21.html.
ASTM. ASTM D3359–22: standard test methods for rating adhesion by tape test. 2022. https://www.astm.org/d3359-22.html.
ASTM. ASTM E606/E606M-12: standard test method for strain-controlled fatigue testing. 2020. https://www.astm.org/e0606_e0606m-12.html.
Austelle CW, O’Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, Short B, Badran BW. A comprehensive review of vagus nerve stimulation for depression. Neuromodulation. 2022;25:309–15. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.13528.
Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DAX, Sinclair NC, Shivdasani MN, Yeoh J, McCombe MF, Briggs RJ, Opie NL, Villalobos J, Dimitrov PN, Varsamidis M, Petoe MA, McCarthy CD, Walker JG, Barnes N, Burkitt AN, Williams CE, Shepherd RK, Allen PJ, Bionic Vision Australia Research Consortium. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE. 2014;9:e115239. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0115239.
Azemi E, Lagenaur CF, Cui XT. The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials. 2011;32:681–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2010.09.033.
Badia J, Boretius T, Andreu D, Azevedo-Coste C, Stieglitz T, Navarro X. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J Neural Eng. 2011;8: 036023. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/8/3/036023.
Baek DH, Lee J, Byeon HJ, Choi H, Young Kim I, Lee KM, Jungho Pak J, Pyo Jang D, Lee SH. A thin film polyimide mesh microelectrode for chronic epidural electrocorticography recording with enhanced contactability. J Neural Eng. 2014;11:046023. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/11/4/046023.
Bamford JA, Todd KG, Mushahwar VK. The effects of intraspinal microstimulation on spinal cord tissue in the rat. Biomaterials. 2010;31:5552–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2010.03.051.
Bamford JA, Marc Lebel R, Parseyan K, Mushahwar VK. The fabrication, implantation, and stability of intraspinal microwire arrays in the spinal cord of cat and rat. IEEE Trans Neural Syst Rehabil Eng. 2017;25:287–96. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TNSRE.2016.2555959.
Barlas S. FDA flags inconsistent hospital reporting of medical device problems. P T. 2017;42:97–115.
Barolat G, Myklebust JB, Wenninger W. Effects of spinal cord stimulation on spasticity and spasms secondary to myelopathy. Appl Neurophysiol. 1988;51:29–44.
Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C, Franquemont L, Donoghue JP. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng. 2013;10:066014. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/10/6/066014.
Barry MP, Sadeghi R, Towle VL, Stipp K, Grant P, Lane FJ, Szlyk JP, Dagnelie G, Troyk PR. Contributed session III: characteristics of electrically-induced visual percepts in the first human with the intracortical visual prosthesis. J Vis. 2023;23:35. https://doiorg.publicaciones.saludcastillayleon.es/10.1167/jov.23.11.35.
Bas E, Goncalves S, Adams M, Dinh CT, Bas JM, Van De Water TR, Eshraghi AA. Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation. Front Cell Neurosci. 2015;9:303. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fncel.2015.00303.
Becerra-Fajardo L, Minguillon J, Krob MO, Rodrigues C, González-Sánchez M, Megía-García Á, Galán CR, Henares FG, Comerma A, Del-Ama AJ, Gil-Agudo A, Grandas F, Schneider-Ickert A, Barroso FO, Ivorra A. First-in-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by volume conduction. J Neuroeng Rehabil. 2024;21:4. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12984-023-01295-5.
Bedell HW, Hermann JK, Ravikumar M, Lin S, Rein A, Li X, Molinich E, Smith PD, Selkirk SM, Miller RH, Sidik S, Taylor DM, Capadona JR. Targeting CD14 on blood derived cells improves intracortical microelectrode performance. Biomaterials. 2018a;163:163–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2018.02.014.
Bedell HW, Song S, Li X, Molinich E, Lin S, Stiller A, Danda V, Ecker M, Shoffstall AJ, Voit WE, Pancrazio JJ, Capadona JR. Understanding the effects of both CD14-mediated innate immunity and device/tissue mechanical mismatch in the neuroinflammatory response to intracortical microelectrodes. Front Neurosci. 2018b;12:772. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2018.00772.
Benedict BC, Ghanbari MM, Muller R. Phased array beamforming methods for powering biomedical ultrasonic implants. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69:2756–65. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TUFFC.2022.3197705.
Bennett C, Samikkannu M, Mohammed F, Dietrich WD, Rajguru SM, Prasad A. Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials. 2018;164:1–10. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2018.02.036.
Bennett C, Mohammed F, Álvarez-Ciara A, Nguyen MA, Dietrich WD, Rajguru SM, Streit WJ, Prasad A. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials. 2019;188:144–59. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2018.09.040.
Berger MS, Ojemann GA. Intraoperative brain mapping techniques in neuro-oncology. Stereotact Funct Neurosurg. 1992;58:153–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000098989.
Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, Srinivasan S, Jobst B, Gross RE, Shields DC, Barkley G, Salanova V, Olejniczak P, Cole A, Cash SS, Noe K, Wharen R, Worrell G, Murro AM, Edwards J, Duchowny M, Spencer D, Smith M, Geller E, Gwinn R, Skidmore C, Eisenschenk S, Berg M, Heck C, Van Ness P, Fountain N, Rutecki P, Massey A, O’Donovan C, Labar D, Duckrow RB, Hirsch LJ, Courtney T, Sun FT, Seale CG. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84:810–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1212/WNL.0000000000001280.
Biran R, Martin DC, Tresco PA. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol. 2005;195:115–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.expneurol.2005.04.020.
Biran R, Martin DC, Tresco PA. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J Biomed Mater Res, Part A. 2007;82A:169–78. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbm.a.31138.
Blackrock Neurotech. Utah array, electrodes | Products. Blackrock Neurotech. 2023a. URL https://blackrockneurotech.com/products/utah-array/. Accessed 10.30.23.
Blackrock Neurotech. Utah slant array, electrodes | Products. Blackrock Neurotech. 2023b. URL https://blackrockneurotech.com/products/slant-array/. Accessed 10.30.23.
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrn2038.
Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron. 2010;26:62–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bios.2010.05.010.
Bose R, Dalrymple AN, Sarma D, Petersen BA, Barra B, Nanivadekar AC, Madonna TJ, Liu MF, Levy I, Helm ER, Miele VJ, Capogrosso M, Fisher LE, Weber DJ. Characterizing spinal reflexes evoked by spinal cord stimulation to restore sensation in people with lower-limb amputation. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/2023.09.08.23295273.
Bose R, Petersen B, Sarma D, Barra B, Nanivadekar A, Madonna T, Liu M, Levy I, Helm E, Miele V, Fisher L, Weber D, Dalrymple A. Changes in muscle activation and joint motion during walking after transtibial amputation with sensory feedback from spinal cord stimulation: a case study. 2025. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/2024.12.27.24319684.
Boston Scientific. Precision spinal cord stimulation system clinician manual. 2017.
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: a comparison between epidural and subdural recordings. Eur J Neurosci. 2023;57:1260–88. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ejn.15941.
Breach CD, Wai Mun T, Lee TK, Holliday R. Moisture induced corrosion in gold and copper ball bonds, in: 2010 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium (IEMT). Presented at the 2010 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium (IEMT). 2010:1–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/IEMT.2010.5746748.
Bredeson SD, Troyk PR, Suh S, Bak M. Identification and quantification of electrical leakage pathways in floating microelectrode arrays, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013:1542–1545. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/EMBC.2013.6609807.
Bredeson S, Kanneganti A, Deku F, Cogan S, Romero-Ortega M, Troyk P. Chronic in-vivo testing of a 16-channel implantable wireless neural stimulator, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015:1017–1020. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/EMBC.2015.7318537.
Brooker C, Russo M, Cousins MJ, Taylor N, Holford L, Martin R, Boesel T, Sullivan R, Hanson E, Gmel GE, Shariati NH, Poree L, Parker J. ECAP-controlled closed-loop spinal cord stimulation efficacy and opioid reduction over 24-months: final results of the prospective, multicenter, open-label avalon study. Pain Pract. 2021;21:680–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/papr.13008.
Broughton G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117:12S-34S. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/01.prs.0000225430.42531.c2.
Brown WJ, Babb TL, Soper HV, Lieb JP, Ottino CA, Crandall PH. Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys. J Neurosurg. 1977;47:366–79. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/jns.1977.47.3.0366.
Bruckenstein S, Miller B. An experimental study of nonuniform current distribution at rotating disk electrodes. J Electrochem Soc. 1970;117:1044. https://doiorg.publicaciones.saludcastillayleon.es/10.1149/1.2407716.
Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng. 1977;24:59–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.1977.326218.
Butson CR, McIntyre CC. Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng. 2006;3:1–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/3/1/001.
Butson CR, Maks CB, McIntyre CC. Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol. 2006;117:447–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.clinph.2005.10.007.
Calvert JS, Darie R, Parker SR, Shaaya E, Syed S, McLaughlin BL, Fridley JS, Borton DA. Spatiotemporal distribution of electrically evoked spinal compound action potentials during spinal cord stimulation. Neuromodulation. 2022;S1094–7159(22):00644–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neurom.2022.03.007.
Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg. 2004;100:254–67. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/spi.2004.100.3.0254.
Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng. 1991;38:758–68. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/10.83588.
Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science. 2008;319:1370–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.1153307.
Capogrosso M, Prat-Ortega G, Ensel S, Donadio S, Borda L, Boos A, Yadav P, Verma N, Ho J, Frazier-Kim S, Fields D, Fisher L, Weber D, Duong T, Weinstein S, Eliasson M, Montes J, Chen K, Clemens P, Gerzsten P, Mentis G, Pirondini E, Friedlander R. Targeted stimulation of the sensory afferents improves motoneuron function in humans with spinal muscular atrophy. 2024. Research Square Preprint. https://doiorg.publicaciones.saludcastillayleon.es/10.21203/rs.3.rs-3970994/v1.
Carhart MR, He J, Herman R, D’Luzansky S, Willis WT. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004;12:32–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TNSRE.2003.822763.
Chandrasekaran S, Nanivadekar AC, McKernan G, Helm ER, Boninger ML, Collinger JL, Gaunt RA, Fisher LE. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. eLife. 2020;9:e54349. https://doiorg.publicaciones.saludcastillayleon.es/10.7554/eLife.54349.
Chaplin E. Functional neuromuscular stimulation for mobility in people with spinal cord injuries. The Parastep I System. J Spinal Cord Med. 1996;19:99–105.
Chapman CAR, Cuttaz EA, Goding JA, Green RA. Actively controlled local drug delivery using conductive polymer-based devices. Appl Phys Lett. 2020;116:010501. https://doiorg.publicaciones.saludcastillayleon.es/10.1063/1.5138587.
Chapman KB, Yousef T, Amireh A, Kallewaard JW, van Helmond N. Lead migration rate in dorsal root ganglion stimulation using lead anchoring techniques: a follow-up study. Pain Pract. 2024;24:72–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/papr.13285.
Charkhkar H, Shell CE, Marasco PD, Pinault GJ, Tyler DJ, Triolo RJ. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J Neural Eng. 2018;15:056002. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aac964.
Chen X, Morales-Gregorio A, Sprenger J, Kleinjohann A, Sridhar S, van Albada SJ, Grün S, Roelfsema PR. 1024-channel electrophysiological recordings in macaque V1 and V4 during resting state. Sci Data. 2022;9:77. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41597-022-01180-1.
Chestek CA, Gilja V, Nuyujukian P, Foster JD, Fan JM, Kaufman MT, Churchland MM, Rivera-Alvidrez Z, Cunningham JP, Ryu SI, Shenoy KV. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J Neural Eng. 2011;8:045005. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/8/4/045005.
Cheung KC. Implantable microscale neural interfaces. Biomed Microdevices. 2007;9:923–38. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10544-006-9045-z.
Chikar JA, Hendricks JL, Richardson-Burns SM, Raphael Y, Pfingst BE, Martin DC. The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials. 2012;33:1982–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2011.11.052.
Choi EJ, Ri HS, Park H, Kim HJ, Yoon JU, Byeon GJ. Unexpected extrusion of the implantable pulse generator of the spinal cord stimulator - a case report -. Anesth Pain Med. 2021;16:103–107. https://doiorg.publicaciones.saludcastillayleon.es/10.17085/apm.20054.
Christensen MB, Pearce SM, Ledbetter NM, Warren DJ, Clark GA, Tresco PA. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater. 2014;10:4650–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2014.07.010.
Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, Tyler DJ, Triolo RJ. Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves. J NeuroEngineering Rehabil. 2017;14:70. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12984-017-0285-3.
Christie B, Sadeghi R, Kartha A, Caspi A, Klatzky RL, Tenore F, Billings S, Dagnelie G. Evaluating the influence of stimulation parameters on phosphene detectability for epiretinal prostheses. Invest Ophthalmol vis Sci. 2022a;63:4069-F0033.
Christie B, Sadeghi R, Kartha A, Caspi A, Tenore FV, Klatzky RL, Dagnelie G, Billings S. Sequential epiretinal stimulation improves discrimination in simple shape discrimination tasks only. J Neural Eng. 2022b;19:036033. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ac7326.
Chu JU, Song KI, Han S, Lee SH, Kim J, Kang JY, Hwang D, Suh JKF, Choi K, Youn I. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems. Physiol Meas. 2012;33:943–67. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/0967-3334/33/6/943.
Chung T, Wang JQ, Wang J, Cao B, Li Y, Pang SW. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. J Neural Eng. 2015;12:056018. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/12/5/056018.
Cisnal A, Fraile JC, Pérez-Turiel J, Muñoz-Martinez V, Müller C, R Ihmig F. A measurement setup and automated calculation method to determine the charge injection capacity of implantable microelectrodes. Sensors (Basel). 2018:18. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/s18124152.
Clingan JA, Patel A, Maher DP. Survey of Spinal cord stimulation hardware currently available for the treatment of chronic pain in the United States. Front Pain Res. 2020:1. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fpain.2020.572907.
Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev.bioeng.10.061807.160518.
Colachis SC, Dunlap CF, Annetta NV, Tamrakar SM, Bockbrader MA, Friedenberg DA. Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis. J Neural Eng. 2021:18. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ac1add.
Collias JC, Manuelidis EE. Histopathological changes produced by implanted electrodes in cat brains; comparison with histopathological changes in human and experimental puncture wounds. J Neurosurg. 1957;14:302–28. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/jns.1957.14.3.0302.
Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381:557–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(12)61816-9.
Costandi S, Mekhail N, Azer G, Mehanny DS, Hanna D, Salma Y, Bolash R, Saweris Y. Longevity and utilization cost of rechargeable and non-rechargeable spinal cord stimulation implants: a comparative study. Pain Pract. 2020;20:937–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/papr.12926.
Cuttaz EA, Chapman CAR, Syed O, Goding JA, Green RA. Stretchable, fully polymeric electrode arrays for peripheral nerve stimulation. Adv Sci. 2021;8:2004033. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/advs.202004033.
Čvančara P, Boretius T, López-Álvarez VM, Maciejasz P, Andreu D, Raspopovic S, Petrini F, Micera S, Granata G, Fernandez E, Rossini PM, Yoshida K, Jensen W, Divoux J-L, Guiraud D, Navarro X, Stieglitz T. Stability of flexible thin-film metallization stimulation electrodes: analysis of explants after first-in-human study and improvement of in vivo performance. J Neural Eng. 2020;17:046006. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab9a9a.
Čvančara P, Valle G, Müller M, Bartels I, Guiho T, Hiairrassary A, Petrini F, Raspopovic S, Strauss I, Granata G, Fernandez E, Rossini PM, Barbaro M, Yoshida K, Jensen W, Divoux JL, Guiraud D, Micera S, Stieglitz T. Bringing sensation to prosthetic hands—chronic assessment of implanted thin-film electrodes in humans. npj Flex Electron. 2023;7:1–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41528-023-00284-x.
da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J, Barale PO, Sahel JA, Stanga PE, Hafezi F, Safran AB, Salzmann J, Santos A, Birch D, Spencer R, Cideciyan AV, de Juan E, Duncan JL, Eliott D, Fawzi A, Olmos de Koo LC, Ho AC, Brown G, Haller J, Regillo C, Del Priore LV, Arditi A, Greenberg RJ, Argus II Study Group. Five-year safety and performance results from the argus II retinal prosthesis system clinical trial. Ophthalmology. 2016;123:2248–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ophtha.2016.06.049.
Dadd F, Schuller P, Pawsey NCK, Manouchehri S. Strain relief in an implantable electrode assembly. US20110196465A1. 2011.
Dalrymple AN. Implanted devices: the importance of both electrochemical performance and biological acceptance. Neural Regen Res. 2021;16:1188–9. https://doiorg.publicaciones.saludcastillayleon.es/10.4103/1673-5374.300342.
Dalrymple AN, Mushahwar VK. Intelligent control of a spinal prosthesis to restore walking after neural injury: recent work and future possibilities. J Med Robot Res. 2020;05:2041003. https://doiorg.publicaciones.saludcastillayleon.es/10.1142/S2424905X20410032.
Dalrymple AN, Everaert DG, Hu DS, Mushahwar VK. A speed-adaptive intraspinal microstimulation controller to restore weight-bearing stepping in a spinal cord hemisection model. J Neural Eng. 2018;15:056023. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aad872.
Dalrymple AN, Huynh M, Robles UAA, Marroquin JB, Lee C, Petrossians A, Whalen JJ, Li D, Parkington HC, Forsythe JS, Green R, Poole-Warren LA, Shepherd RK, Fallon JB. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study. J Neural Eng. 2019;17:016015. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab5163.
Dalrymple AN, Huynh M, Nayagam BA, Lee C, Weiland GR, Petrossians A III, JJW, Fallon, JB, Shepherd RK. Electrochemical and biological characterization of thin-film platinum-iridium alloy electrode coatings: a chronic in vivo study. J Neural Eng. 2020a. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab933d.
Dalrymple AN, Robles UA, Huynh M, Nayagam BA, Green RA, Poole-Warren LA, Fallon JB, Shepherd RK. Electrochemical and biological performance of chronically stimulated conductive hydrogel electrodes. J Neural Eng. 2020b;17:026018. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab7cfc.
Dalrymple AN, Roszko DA, Sutton RS, Mushahwar VK. Pavlovian control of intraspinal microstimulation to produce over-ground walking. J Neural Eng. 2020c;17:036002. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab8e8e.
Dalrymple AN, Ting JE, Bose R, Trevathan JK, Nieuwoudt S, Lempka SF, Franke M, Ludwig KA, Shoffstall AJ, Fisher LE, Weber DJ. Stimulation of the dorsal root ganglion using an Injectrode®. J Neural Eng. 2021;18:056068. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ac2ffb.
Darrow D, Balser D, Netoff TI, Krassioukov A, Phillips A, Parr A, Samadani U. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J Neurotrauma. 2019;36:2325–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/neu.2018.6006.
Daschner R, Greppmaier U, Kokelmann M, Rudorf S, Rudorf R, Schleehauf S, Wrobel WG. Laboratory and clinical reliability of conformally coated subretinal implants. Biomed Microdevices. 2017;19:7. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10544-017-0147-6.
Dauth GW, Defendini R, Gilman S, Tennyson VM, Kremzner L. Long-term surface stimulation of the cerebellum in the monkey. I. Light microscopic, electrophysiologic, and clinical observations. Surg Neurol. 1977;7:377–84.
Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, DeMark L, Hochberg LR, Kautz SA, Majid A, O’Dell MW, Pierce D, Prudente CN, Redgrave J, Turner DL, Engineer ND, Kimberley TJ. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet. 2021;397:1545–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(21)00475-X.
De Ferrari GM, Crijns HJGM, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J, Raspopovic S, Klein H, Swedberg K, Schwartz PJ, Investigators CMT. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32:847–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/eurheartj/ehq391.
Deer TR, Pope JE, Lamer TJ, Grider JS, Provenzano D, Lubenow TR, FitzGerald JJ, Hunter C, Falowski S, Sayed D, Baranidharan G, Patel NK, Davis T, Green A, Pajuelo A, Epstein LJ, Harned M, Liem L, Christo PJ, Chakravarthy K, Gilmore C, Huygen F, Lee E, Metha P, Nijhuis H, Patterson DG, Petersen E, Pilitsis JG, Rowe JJ, Rupert MP, Skaribas I, Sweet J, Verrills P, Wilson D, Levy RM, Mekhail N. The neuromodulation appropriateness consensus committee on best practices for dorsal root ganglion stimulation. Neuromodulation. 2019;22:1–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.12845.
Deer T, Pope J, Hunter C, Falowski S, Kapural L, Kramer J, Levy R. Safety analysis of dorsal root ganglion stimulation in the treatment of chronic pain. Neuromodulation. 2020;23:239–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.12941.
Dekopov AV, Shabalov VA, Tomsky AA, Hit MV, Salova EM. Chronic spinal cord stimulation in the treatment of cerebral and spinal spasticity. Stereotact Funct Neurosurg. 2015;93:133–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000368905.
DeMichele GA, Zhe H, Troyk PR. Integrated reliability modules used in an implantable wireless EMG sensor, in: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). Presented at the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). 2013:847–850. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/NER.2013.6696067.
DeMichele GA, Cogan SF, Troyk PR, Chen H, Hu Z. Multichannel wireless ECoG array ASIC devices, in: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Presented at the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014:3969–3972. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/EMBC.2014.6944493.
Deng DY, Gulati M, Rutman M, Raz S, Rodríguez LV. Failure of sacral nerve stimulation due to migration of tined lead. J Urol. 2006. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0022-5347(06)00318-1.
Deo DR, Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. Brain control of bimanual movement enabled by recurrent neural networks. Sci Rep. 2024;14:1598. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-024-51617-3.
Desautels TA, Choe J, Gad P, Nandra MS, Roy RR, Zhong H, Tai YC, Edgerton VR, Burdick JW. An active learning algorithm for control of epidural electrostimulation. IEEE Trans Biomed Eng. 2015;62:2443–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2015.2431911.
Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14:1189–97. https://doiorg.publicaciones.saludcastillayleon.es/10.2174/092986707780597961.
Dibué-Adjei M, Kamp MA, Vonck K. 30 years of vagus nerve stimulation trials in epilepsy: Do we need neuromodulation-specific trial designs? Epilepsy Res. 2019;153:71–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.eplepsyres.2019.02.004.
Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/01.sla.0000133083.54934.ae.
Drew L. Elon Musk’s Neuralink brain chip: what scientists think of first human trial. Nature. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/d41586-024-00304-4.
Drobisz D, Damborská A. Deep brain stimulation targets for treating depression. Behav Brain Res. 2019;359:266–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbr.2018.11.004.
Dubey A, Ray S. Cortical Electrocorticogram (ECoG) Is a Local Signal. J Neurosci. 2019;39:4299–311. https://doiorg.publicaciones.saludcastillayleon.es/10.1523/JNEUROSCI.2917-18.2019.
Dujari S, Gold CA. Infected implantable pulse generator. Neurohospitalist. 2019;9:172–3. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/1941874418809869.
Dumm G, Fallon JB, Williams CE, Shivdasani MN. Virtual electrodes by current steering in retinal prostheses. Invest Ophthalmol vis Sci. 2014;55:8077–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1167/iovs.14-15391.
Dymond AM, Kaechele LE, Jurist JM, Crandall PH. Brain tissue reaction to some chronically implanted metals. J Neurosurg. 1970;33:574–80. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/jns.1970.33.5.0574.
Edell DJ, Toi VV, McNeil VM, Clark LD. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans Biomed Eng. 1992;39:635–43. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/10.141202.
Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med. 2016;17:325–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/pm/pnv025.
Ersen A, Elkabes S, Freedman DS, Sahin M. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng. 2015;12:016019. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/12/1/016019.
Eter N, Engel DR, Meyer L, Helb HM, Roth F, Maurer J, Holz FG, Kurts C. In vivo visualization of dendritic cells, macrophages, and microglial cells responding to laser-induced damage in the fundus of the eye. Invest Ophthalmol vis Sci. 2008;49:3649–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1167/iovs.07-1322.
Falowski SM, Provenzano DA, Xia Y, Doth AH. Spinal cord stimulation infection rate and risk factors: results from a united states payer database. Neuromodulation. 2019;22:279–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.12843.
Farsinezhad S, Mohammadpour A, Dalrymple AN, Geisinger J, Kar P, Brett MJ, Shankar K. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics. J Nanosci Nanotechnol. 2013;13:2885–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1166/jnn.2013.7409.
FDA. Class 1 device recall VNS therapy SenTiva generator, model 1000. Center for Devices and Radiological Health. 2019. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?id=176637.
FDA. Conduct a trial stimulation period before implanting a Spinal Cord Stimulator (SCS) - letter to health care providers. Center for Devices and Radiological Health. 2020. https://www.fda.gov/medical-devices/letters-health-care-providers/conduct-trial-stimulation-period-implanting-spinal-cord-stimulator-scs-letter-health-care-providers.
FDA. Abbott medical recalls proclaim and infinity IPGs for inability to exit Magnetic Resonance Imaging (MRI) mode. Center for Devices and Radiological Health. 2023. https://www.fda.gov/medical-devices/medical-device-recalls/abbott-medical-recalls-proclaim-and-infinity-ipgs-inability-exit-magnetic-resonance-imaging-mri-mode.
FDA. What is a serious adverse event? Office of the commissioner. 2024. https://www.fda.gov/safety/reporting-serious-problems-fda/what-serious-adverse-event.
FDA. Medical device recalls vagus nerve stimulator. 2025a.
FDA. Medical device recalls spinal cord stimulator. 2025b.
Fekete Z, Pongrácz A. Multifunctional soft implants to monitor and control neural activity in the central and peripheral nervous system: a review. Sens Actuators, B Chem. 2017;243:1214–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.snb.2016.12.096.
Ferro MD, Proctor CM, Gonzalez A, Zhao E, Slezia A, Pas J, Dijk G, Donahue MJ, Williamson A, Malliaras GG, Giocomo L, Melosh NA. NeuroRoots, a bio-inspired, seamless brain machine interface device for long-term recording. 2018. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/460949.
Fisher LE, Tyler DJ, Anderson JS, Triolo RJ. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve. J Neural Eng. 2009;6:046010. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/6/4/046010.
Fisher LE, Ayers CA, Ciollaro M, Ventura V, Weber DJ, Gaunt RA. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia. J Neural Eng. 2014;11:036007. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/11/3/036007.
Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ, Tyler-Kabara EC, Boninger ML, Collinger JL, Gaunt RA. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 2021;372:831–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.abd0380.
Foggia MJ, Quevedo RV, Hansen MR. Intracochlear fibrosis and the foreign body response to cochlear implant biomaterials. Laryngoscope Investig Otolaryngol. 2019;4:678–83. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/lio2.329.
Force L, da Silva G. Management of complications of sacral neuromodulation. Semin Colon Rectal Surg. 2017;28:173–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1053/j.scrs.2017.07.006.
Ford B. Deep brain stimulation, in: Kompoliti, K., Metman, L.V. (Eds.), Encyclopedia of movement disorders. Academic Press, Oxford. 2010:277–282. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/B978-0-12-374105-9.00453-6.
Formento E, D’Anna E, Gribi S, Lacour SP, Micera S. A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity. J Neural Eng. 2020;17:046019. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aba4fc.
Forsyth IA, Dunston M, Lombardi G, Rind GS, Ronayne S, Wong YT, May CN, Grayden DB, Oxley T, Opie N, John SE. Evaluation of a minimally invasive endovascular neural interface for decoding motor activity, in: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). Presented at the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). 2019:750–753. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/NER.2019.8717000.
Frey L, Bandaru P, Zhang YS, O’Kelly K, Khademhosseini A, Shin SR. A dual-layered microfluidic system for long-term controlled In Situ delivery of multiple anti-inflammatory factors for chronic neural applications. Adv Funct Mater. 2018;28:1702009. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/adfm.201702009.
Fu Z, Rutishauser U. Human single neuron recordings: depth electrode with microwires (“hybrid” electrode), in: Grafman, J.H. (Ed.), Encyclopedia of the Human Brain (Second Edition). Elsevier, Oxford. 2025:42–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/B978-0-12-820480-1.00002-4.
Fu T-M, Hong G, Viveros RD, Zhou T, Lieber CM. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc Natl Acad Sci U S A. 2017;114:E10046–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.1717695114.
Gagliardi AR, Ducey A, Lehoux P, Turgeon T, Ross S, Trbovich P, Easty A, Bell C, Urbach D. Factors influencing the reporting of adverse medical device events: qualitative interviews with physicians about higher risk implantable devices. BMJ Qual Saf. 2018;27:190–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1136/bmjqs-2017-006481.
Gaire J, Lee HC, Hilborn N, Ward R, Regan M, Otto KJ. The role of inflammation on the functionality of intracortical microelectrodes. J Neural Eng. 2018;15:066027. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aae4b6.
Gan LS, Ravid E, Kowalczewski JA, Olson JL, Morhart M, Prochazka A. First permanent implant of nerve stimulation leads activated by surface electrodes, enabling hand grasp and release: the stimulus router neuroprosthesis. Neurorehabil Neural Repair. 2012;26:335–43. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/1545968311420443.
Ganji M, Hossain L, Tanaka A, Thunemann M, Halgren E, Gilja V, Devor A, Dayeh SA. Monolithic and scalable Au nanorod substrates improve PEDOT-metal adhesion and stability in neural electrodes. Adv Healthc Mater. 2018;7:e1800923. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/adhm.201800923.
Garcia-Sandoval A, Pal A, Mishra AM, Sherman S, Parikh AR, Joshi-Imre A, Arreaga-Salas D, Gutierrez-Heredia G, Duran-Martinez AC, Nathan J, Hosseini SM, Carmel JB, Voit W. Chronic softening spinal cord stimulation arrays. J Neural Eng. 2018;15:045002. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aab90d.
Garg I, Wang D. Complications of spinal cord stimulator trials and implants: a review. Curr Pain Headache Rep. 2023;27:837–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11916-023-01190-7.
Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15:3640–59. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms15033640.
George JA, Kluger DT, Davis TS, Wendelken SM, Okorokova EV, He Q, Duncan CC, Hutchinson DT, Thumser ZC, Beckler DT, Marasco PD, Bensmaia SJ, Clark GA. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci Robot. 2019:4. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scirobotics.aax2352.
George JA, Page DM, Davis TS, Duncan CC, Hutchinson DT, Rieth LW, Clark GA. Long-term performance of Utah slanted electrode arrays and intramuscular electromyographic leads implanted chronically in human arm nerves and muscles. J Neural Eng. 2020;17:056042. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/abc025.
Gilgunn PJ, Khilwani R, Kozai TDY, Weber DJ, Cui XT, Erdos G, Ozdoganlar OB, Fedder GK. An ultra-compliant, scalable neural probe with molded biodissolvable delivery vehicle, in: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). Presented at the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). 2012:56–59. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/MEMSYS.2012.6170092.
Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA, Sayenko DG, Van Straaten MG, Drubach DI, Veith DD, Thoreson AR, Lopez C, Gerasimenko YP, Edgerton VR, Lee KH, Zhao KD. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41591-018-0175-7.
Golabchi A, Wu B, Cao B, Bettinger CJ, Cui XT. Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials. 2019;225:119519. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2019.119519.
Goldstein SR, Salcman M. Mechanical factors in the design of chronic recording intracortical microelectrodes. IEEE Trans Biomed Eng. 1973;20:260–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.1973.324190.
Goldstein L, Teng Z-P, Zeserson E, Patel M, Regan RF. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res. 2003;73:113–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jnr.10633.
Goodwin BJ, Mahmud R, TomThundyil S, Rivera-Colon G, Murray VW, O’Donnell K. The efficacy of spinal cord stimulators in the reduction of multiple sclerosis spasticity: a narrative systematic review. Brain Neurorehabil. 2023;16:e19. https://doiorg.publicaciones.saludcastillayleon.es/10.12786/bn.2023.16.e19.
Goree JH, Grant SA, Dickerson DM, Ilfeld BM, Eshraghi Y, Vaid S, Valimahomed AK, Shah JR, Smith GL, Finneran JJ, Shah NN, Guirguis MN, Eckmann MS, Antony AB, Ohlendorf BJ, Gupta M, Gilbert JE, Wongsarnpigoon A, Boggs JW. Randomized placebo-controlled trial of 60-day percutaneous peripheral nerve stimulation treatment indicates relief of persistent postoperative pain, and improved function after knee replacement. Neuromodulation. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neurom.2024.03.001.
Goudman L, Moens M, Kelly S, Young C, Pilitsis JG. Incidence of infections, explantations, and displacements/mechanical complications of spinal cord stimulation during the past eight years. Neuromodulation. 2024;27:1082–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neurom.2023.09.001.
Green RA, Lovell NH, Poole-Warren LA. Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials. 2009;30:3637–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2009.03.043.
Green RA, Hassarati RT, Goding JA, Baek S, Lovell NH, Martens PJ, Poole-Warren LA. Conductive hydrogels: mechanically robust hybrids for use as biomaterials. Macromol Biosci. 2012;12:494–501. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/mabi.201100490.
Greenberg R, Mann A, Little J, Ihrig KH, Mech B, Talbot N, Zhou D. Implantable retinal electrode array configuration for minimal retinal damage and method of reducing retinal stress. US20020111658A1. 2002.
Greenspon CM, Battell EE, Devonshire IM, Donaldson LF, Chapman V, Hathway GJ. Lamina-specific population encoding of cutaneous signals in the spinal dorsal horn using multi-electrode arrays. J Physiol. 2019;597:377–97. https://doiorg.publicaciones.saludcastillayleon.es/10.1113/JP277036.
Gregori NZ, Davis JL, Rizzo S. Bimanual technique for retinal tacking of epiretinal prosthesis. Retina. 2016;36:199–202. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/IAE.0000000000000812.
Grill WM, Mortimer JT. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J Biomed Mater Res. 2000;50:215–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/(SICI)1097-4636(200005)50:23.0.CO;2-A.
Groothuis J, Ramsey NF, Ramakers GMJ, van der Plasse G. Physiological challenges for intracortical electrodes. Brain Stimul. 2014;7:1–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.brs.2013.07.001.
Haberler C, Alesch F, Mazal PR, Pilz P, Jellinger K, Pinter MM, Hainfellner JA, Budka H. No tissue damage by chronic deep brain stimulation in Parkinson’s disease. Ann Neurol. 2000;48:372–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/1531-8249(200009)48:33.0.CO;2-0.
Hamada M, Kayashima M, Uryu M, Moroi Y, Urabe K, Furue M. Pressure cutaneous ulcer over a pacemaker successfully treated with left subcostal transplantation in an extremely thin patient. J Dermatol. 2006;33:567–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1346-8138.2006.00133.x.
Hanna J, Saad R, Sibai N. Chapter 13 - Dorsal root ganglion stimulation—implant, in: Abd-Elsayed, A. (Ed.), Neuromodulation techniques for the spine. Elsevier. 2024:109–119. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/B978-0-323-87584-4.00022-X.
Hanson TL, Diaz-Botia CA, Kharazia V, Maharbiz MM, Sabes PN. The “sewing machine” for minimally invasive neural recording. 2019. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/578542.
Hardin E, Kobetic R, Murray L, Corado-Ahmed M, Pinault G, Sakai J, Bailey SN, Ho C, Triolo RJ. Walking after incomplete spinal cord injury using an implanted FES system: a case report. J Rehabil Res Dev. 2007;44:333–46.
Harkema SJ, Wang S, Angeli CA, Chen Y, Boakye M, Ugiliweneza B, Hirsch GA. Normalization of blood pressure with spinal cord epidural stimulation after severe spinal cord injury. Front Hum Neurosci. 2018:12. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnhum.2018.00083.
Harnack D, Winter C, Meissner W, Reum T, Kupsch A, Morgenstern R. The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats. J Neurosci Methods. 2004;138:207–16. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneumeth.2004.04.019.
Harris JP, Capadona JR, Miller RH, Healy BC, Shanmuganathan K, Rowan SJ, Weder C, Tyler DJ. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies. J Neural Eng. 2011a;8:066011. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/8/6/066011.
Harris JP, Hess AE, Rowan SJ, Weder C, Zorman CA, Tyler DJ, Capadona JR. In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes. J Neural Eng. 2011b;8:046010. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/8/4/046010.
Harris KD, Elias AL, Chung H-J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci. 2016;51:2771–805. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10853-015-9643-3.
Hart RL, Bhadra N, Montague FW, Kilgore KL, Peckham PH. Design and testing of an advanced implantable neuroprosthesis with myoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2011;19:45–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TNSRE.2010.2079952.
Hassler C, Boretius T, Stieglitz T. Polymers for neural implants. J Polym Sci, Part b: Polym Phys. 2011;49:18–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/polb.22169.
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1124/pr.57.2.4.
He W, McConnell GC, Bellamkonda RV. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng. 2006;3:316–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/3/4/009.
He F, Lycke R, Ganji M, Xie C, Luan L. Ultraflexible neural electrodes for long-lasting intracortical recording. iScience. 2020;23:101387. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.isci.2020.101387.
Heald E, Kilgore K, Hart R, Moss C, Peckham PH. Myoelectric signal from below the level of spinal cord injury as a command source for an implanted upper extremity neuroprosthesis - a case report. J NeuroEngineering Rehabil. 2019;16:100. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12984-019-0571-3.
FDA. About Manufacturer and User Facility Device Experience (MAUDE) Database. Center for Devices and Radiological Health. 2024. https://www.fda.gov/medical-devices/mandatory-reporting-requirements-manufacturers-importers-and-device-user-facilities/about-manufacturer-and-user-facility-device-experience-maude-database.
Henderson JM, Schade CM, Sasaki J, Caraway DL, Oakley JC. Prevention of mechanical failures in implanted spinal cord stimulation systems. Neuromodulation. 2006;9:183–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1525-1403.2006.00059.x.
Henson PM. The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J Immunol. 1971;107:1547–57.
Hermann JK, Capadona JR. Understanding the role of innate immunity in the response to intracortical microelectrodes. Crit Rev Biomed Eng. 2018;46:341–67. https://doiorg.publicaciones.saludcastillayleon.es/10.1615/CritRevBiomedEng.2018027166.
Hermann JK, Lin S, Soffer A, Wong C, Srivastava V, Chang J, Sunil S, Sudhakar S, Tomaszewski WH, Protasiewicz G, Selkirk SM, Miller RH, Capadona JR. The role of toll-like receptor 2 and 4 innate immunity pathways in intracortical microelectrode-induced neuroinflammation. Front Bioeng Biotechnol. 2018a;6:113. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fbioe.2018.00113.
Hermann JK, Ravikumar M, Shoffstall AJ, Ereifej ES, Kovach KM, Chang J, Soffer A, Wong C, Srivastava V, Smith P, Protasiewicz G, Jiang J, Selkirk SM, Miller RH, Sidik S, Ziats NP, Taylor DM, Capadona JR. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance. J Neural Eng. 2018b;15:025002. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aaa03e.
Hess AE, Potter KA, Tyler DJ, Zorman CA, Capadona JR. Environmentally-controlled microtensile testing of mechanically-adaptive polymer nanocomposites for ex vivo characterization. J Vis Exp. 2013:e50078. https://doiorg.publicaciones.saludcastillayleon.es/10.3791/50078.
Hines K, Swaminathan V, Thalheimer S, Kogan M, Wu C, Sharan A. Single-center retrospective analysis of device-related complications related to dorsal root ganglion stimulation for pain relief in 31 patients. Neuromodulation: Technology at the Neural Interface. 2022;25:1040–1044. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.13498.
Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442:164–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature04970.
Hoffmann CM, Coy DS, Moeschler SM, Pingree MJ, Mauck WD. Incidence of temporary peripheral nerve stimulator lead tip retention: a retrospective review of 80 lead placements. Neuromodulation: Technology at the Neural Interface. 2023;26:690–693. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neurom.2022.01.018.
Hogan MK, Barber SM, Rao Z, Kondiles BR, Huang M, Steele WJ, Yu C, Horner PJ. A wireless spinal stimulation system for ventral activation of the rat cervical spinal cord. Sci Rep. 2021;11:14900. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-021-94047-1.
Hong G, Yang X, Zhou T, Lieber CM. Mesh electronics: a new paradigm for tissue-like brain probes. Curr Opin Neurobiol. 2018;50:33–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.conb.2017.11.007.
Horan M, Jacobsen AH, Scherer C, Rosenlund C, Gulisano HA, Søe M, Sørensen JCH, Meier K, Blichfeldt-Eckhardt MR. Complications and effects of dorsal root ganglion stimulation in the treatment of chronic neuropathic pain: a nationwide cohort study in Denmark. Neuromodulation. 2020. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.13171.
Horn CC, Forssell M, Sciullo M, Harms JE, Fulton S, Mou C, Sun F, Simpson TW, Xiao G, Fisher LE, Bettinger C, Fedder GK. Hydrogel-based electrodes for selective cervical vagus nerve stimulation. J Neural Eng. 2021;18:055008. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/abf398.
Hosman T, Pun TK, Kapitonava A, Simeral JD, Hochberg LR. Months-long high-performance fixed LSTM decoder for cursor control in human intracortical brain-computer interfaces, in: 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER). Presented at the 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, Baltimore, MD, USA. 2023:1–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/NER52421.2023.10123740.
Hughes CL, Flesher SN, Weiss JM, Downey JE, Boninger M, Collinger JL, Gaunt RA. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. J Neural Eng. 2021;18:045012. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ac18ad.
Hukins DWL, Mahomed A, Kukureka SN. Accelerated aging for testing polymeric biomaterials and medical devices. Med Eng Phys. 2008;30:1270–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.medengphy.2008.06.001.
Hull T, Giese C, Wexner SD, Mellgren A, Devroede G, Madoff RD, Stromberg K, Coller JA, SNS Study Group. Long-term durability of sacral nerve stimulation therapy for chronic fecal incontinence. Dis Colon Rectum. 2013;56:234–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/DCR.0b013e318276b24c.
Huygen FJPM, Kallewaard JW, Nijhuis H, Liem L, Vesper J, Fahey ME, Blomme B, Morgalla MH, Deer TR, Capobianco RA. Effectiveness and safety of dorsal root ganglion stimulation for the treatment of chronic pain: a pooled analysis. Neuromodulation: Technology at the Neural Interface. 2020;23:213–221. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.13074.
Hyakumura T, Aregueta-Robles U, Duan W, Villalobos J, Adams WK, Poole-Warren L, Fallon JB. Improving deep brain stimulation electrode performance in vivo through use of conductive hydrogel coatings. Front Neurosci. 2021;15:761525. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2021.761525.
Hynds DL, Snow DM. Neurite outgrowth inhibition by chondroitin sulfate proteoglycan: stalling/stopping exceeds turning in human neuroblastoma growth cones. Exp Neurol. 1999;160:244–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1006/exnr.1999.7212.
Ilfeld BM, Gabriel RA, Saulino MF, Chae J, Peckham PH, Grant SA, Gilmore CA, Donohue MC, deBock MG, Wongsarnpigoon A, Boggs JW. Infection rates of electrical leads used for percutaneous neurostimulation of the peripheral nervous system. Pain Pract. 2017;17:753–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/papr.12523.
Iversen MM, Harrison AT, Stanley CT, Dalrymple AN. Rehabilitation of motor and sensory function using spinal cord stimulation: recent advances. Curr Opin Biomed Eng. 2024;32:100566. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cobme.2024.100566.
Jeffery AF, Churchward MA, Mushahwar VK, Todd KG, Elias AL. Hyaluronic acid-based 3D culture model for in vitro testing of electrode biocompatibility. Biomacromol. 2014;15:2157–65. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/bm500318d.
Jeong J, Bae SH, Min KS, Seo J-M, Chung H, Kim SJ. A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans Biomed Eng. 2015;62:982–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2014.2377197.
Jiang C, Mo X, Dong Y, Meng F, Hao H, Zhang J, Feng X, Li L. An experimental study of deep brain stimulation lead fracture: possible fatigue mechanisms and prevention approach. Neuromodulation. 2015;18:243–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.12229. discussion 248.
Jiang X, Fan J, Zhu Z, Wang Z, Guo Y, Liu X, Jia F, Dai C. Cybersecurity in neural interfaces: survey and future trends. Comput Biol Med. 2023;167:107604. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.compbiomed.2023.107604.
John SE, Grayden DB, Yanagisawa T. The future potential of the Stentrode. Expert Rev Med Devices. 2019;16:841–3. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/17434440.2019.1674139.
Jorfi M, Skousen JL, Weder C, Capadona JR. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng. 2015;12:011001. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/12/1/011001.
Kahlow H, Olivecrona M. Complications of vagal nerve stimulation for drug-resistant epilepsy: a single center longitudinal study of 143 patients. Seizure. 2013;22:827–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.seizure.2013.06.011.
Kalia SK, Sankar T, Lozano AM. Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol. 2013;26:374–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/WCO.0b013e3283632d08.
Kane SR, Cogan SF, Ehrlich J, Plante TD, McCreery DB, Troyk PR. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex. IEEE Trans Biomed Eng. 2013;60:2153–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2013.2248152.
Kang G, Borgens RB, Cho Y. Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir. 2011;27:6179–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/la104194m.
Kang S-K, Murphy RKJ, Hwang S-W, Lee SM, Harburg DV, Krueger NA, Shin J, Gamble P, Cheng H, Yu S, Liu Z, McCall JG, Stephen M, Ying H, Kim J, Park G, Webb RC, Lee CH, Chung S, Wie DS, Gujar AD, Vemulapalli B, Kim AH, Lee K-M, Cheng J, Huang Y, Lee SH, Braun PV, Ray WZ, Rogers JA. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature16492.
Kao WJ, Zhao QH, Hiltner A, Anderson JM. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on polydimethylsiloxane, low density polyethylene, and polyetherurethanes. J Biomed Mater Res. 1994;28:73–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbm.820280110.
Kastellorizios M, Tipnis N, Burgess DJ. Foreign body reaction to subcutaneous implants. Adv Exp Med Biol. 2015;865:93–108. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/978-3-319-18603-0_6.
Kato Y, Saito I, Hoshino T, Suzuki T, Mabuchi K. Preliminary study of multichannel flexible neural probes coated with hybrid biodegradable polymer. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:660–3. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/IEMBS.2006.259978.
Khaled I, Elmallah S, Cheng C, Moussa WA, Mushahwar VK, Elias AL. A flexible base electrode array for intraspinal microstimulation. IEEE Trans Biomed Eng. 2013;60:2904–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2013.2265877.
Khaleeq T, Hasegawa H, Samuel M, Ashkan K. Fixed-life or rechargeable battery for deep brain stimulation: which do patients prefer? Neuromodulation. 2019;22:489–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.12810.
Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL, Gazdik MM, Bryden AM, Snyder SA, Stage TG. Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J Rehabil Res Dev. 2003;40:457–68.
Kim D-H, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials. 2006;27:3031–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2005.12.021.
Kim Y-T, Hitchcock RW, Bridge MJ, Tresco PA. Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials. 2004;25:2229–37. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2003.09.010.
Kim DH, Wiler JA, Anderson DJ, Kipke DR, Martin DC. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater. 2010;6:57–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2009.07.034.
Kim SY, Kim MB, Chung W-H, Cho Y-S, Hong SH, Moon IJ. Evaluating reasons for revision surgery and device failure rates in patients who underwent cochlear implantation surgery. JAMA Otolaryngol Head Neck Surg. 2020;146:414–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jamaoto.2020.0030.
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics enables large power delivery to mm-sized wireless bioelectronics. 2023. bioRxiv. 2023.09.01.555944. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/2023.09.01.555944.
Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105:927–40. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbm.a.35958.
Kobetic R, Triolo RJ, Uhlir JP, Bieri C, Wibowo M, Polando G, Marsolais EB, Davis JA, Ferguson KA. Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up case report. IEEE Trans Rehabil Eng. 1999;7:390–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/86.808942.
Kogan M, McGuire M, Riley J. Deep brain stimulation for parkinson disease. Neurosurg Clin N Am. 2019;30:137–46. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.nec.2019.01.001.
Konerding WS, Froriep UP, Kral A, Baumhoff P. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci Rep. 2018;8:3825. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-018-22051-z.
Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, Mehta AD, Levine YA, Faltys M, Zitnik R, Tracey KJ, Tak PP. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:8284–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.1605635113.
Kosel M, Brockmann H, Frick C, Zobel A, Schlaepfer TE. Chronic vagus nerve stimulation for treatment-resistant depression increases regional cerebral blood flow in the dorsolateral prefrontal cortex. Psychiatry Res. 2011;191:153–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pscychresns.2010.11.004.
Kozai TDY, Kipke DR. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J Neurosci Methods. 2009;184:199–205. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneumeth.2009.08.002.
Kozai TDY, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater. 2012a;11:1065–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nmat3468.
Kozai TDY, Vazquez AL, Weaver CL, Kim S-G, Cui XT. In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J Neural Eng. 2012b;9:066001. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/9/6/066001.
Kozai TDY, Gugel Z, Li X, Gilgunn PJ, Khilwani R, Ozdoganlar OB, Fedder GK, Weber DJ, Cui XT. Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials. 2014a;35:9255–68. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2014.07.039.
Kozai TDY, Li X, Bodily LM, Caparosa EM, Zenonos GA, Carlisle DL, Friedlander RM, Cui XT. Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials. 2014b;35:9620–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2014.08.006.
Kozai TDY, Catt K, Li X, Gugel ZV, Olafsson VT, Vazquez AL, Cui XT. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials. 2015;37:25–39. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2014.10.040.
Kozai TDY, Eles JR, Vazquez AL, Cui XT. Two-photon imaging of chronically implanted neural electrodes: sealing methods and new insights. J Neurosci Methods. 2016;258:46–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneumeth.2015.10.007.
Krack P, Fraix V, Mendes A, Benabid AL, Pollak P. Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17(Suppl 3):S188-197. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/mds.10163.
Krukiewicz K, Chudy M, Gregg S, Biggs MJP. The synergistic effects of gold particles and dexamethasone on the electrochemical and biological performance of PEDOT neural interfaces. Polymers (Basel). 2019;11. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/polym11010067.
Krusienski DJ, Shih JJ. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus. J Neural Eng. 2011;8:025006. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/8/2/025006.
Kuffler DP, Sosa IJ, Reyes O. Schwann cell chondroitin sulfate proteoglycan inhibits dorsal root ganglion neuron neurite outgrowth and substrate specificity via a soma and not a growth cone mechanism. J Neurosci Res. 2009;87:2863–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jnr.22132.
Kuo JTW, Kim BJ, Hara SA, Lee CD, Gutierrez CA, Hoang TQ, Meng E. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip. 2013;13:554–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1039/c2lc40935f.
Kuo CH, White-Dzuro GA, Ko AL. Approaches to closed-loop deep brain stimulation for movement disorders. Neurosurg Focus. 2018;45:E2. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/2018.5.FOCUS18173.
Kwon BK, Stammers AMT, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H, Umedaly H, Giffin M, Street J, Boyd MC, Paquette SJ, Fisher CG, Dvorak MF. Cerebrospinal Fluid Inflammatory Cytokines and Biomarkers of Injury Severity in Acute Human Spinal Cord Injury. J Neurotrauma. 2010;27:669–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/neu.2009.1080.
Lago N, Yoshida K, Koch KP, Navarro X. Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans Biomed Eng. 2007;54:281–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2006.886617.
Lander DP, Durakovic N, Kallogjeri D, Jiramongkolchai P, Olsen MA, Piccirillo JF, Buchman CA. Incidence of infectious complications following cochlear implantation in children and adults. JAMA. 2020;323:182–3. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jama.2019.18611.
Lee JE, Liang KJ, Fariss RN, Wong WT. Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol vis Sci. 2008;49:4169–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1167/iovs.08-2076.
Lee YJ, Kim HJ, Do SH, Kang JY, Lee SH. Characterization of nerve-cuff electrode interface for biocompatible and chronic stimulating application. Sens Actuators, B Chem. 2016;237:924–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.snb.2016.06.169.
Lee J, Leung V, Lee A-H, Huang J, Asbeck P, Mercier PP, Shellhammer S, Larson L, Laiwalla F, Nurmikko A. Neural recording and stimulation using wireless networks of microimplants. Nat Electron. 2021;4:604–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41928-021-00631-8.
Lee K, Paulk AC, Ro YG, Cleary DR, Tonsfeldt KJ, Kfir Y, Pezaris JS, Tchoe Y, Lee J, Bourhis AM, Vatsyayan R, Martin JR, Russman SM, Yang JC, Baohan A, Richardson RM, Williams ZM, Fried SI, Hoi Sang U, Raslan AM, Ben-Haim S, Halgren E, Cash SS, Dayeh SA. Flexible, scalable, high channel count stereo-electrode for recording in the human brain. Nat Commun. 2024;15:218. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-023-43727-9.
Lehongre K, Lambrecq V, Whitmarsh S, Frazzini V, Cousyn L, Soleil D, Fernandez-Vidal S, Mathon B, Houot M, Lemaréchal J-D, Clemenceau S, Hasboun D, Adam C, Navarro V. Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: Proposed guidelines based on 10-year experience. Neuroimage. 2022;254:119116. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neuroimage.2022.119116.
Lemoine D, Simon E, Buc G, Deterre M. In vitro reliability testing and in vivo lifespan estimation of wireless Pixium Vision PRIMA photovoltaic subretinal prostheses suggest prolonged durability and functionality in clinical practice. J Neural Eng. 2020;17:035005. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab8f70.
Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6:046001. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/6/4/046001.
Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:63–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/1/2/001.
Lewitus D, Smith KL, Shain W, Kohn J. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomater. 2011;7:2483–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2011.02.027.
Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia. 2018;59:273–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/epi.13964.
Liem L, Russo M, Huygen FJPM, Van Buyten JP, Smet I, Verrills P, Cousins M, Brooker C, Levy R, Deer T, Kramer J. A multicenter, prospective trial to assess the safety and performance of the spinal modulation dorsal root ganglion neurostimulator system in the treatment of chronic pain. Neuromodulation. 2013;16:471–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.12072. discussion 482.
Lisdat F, Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem. 2008;391:1555–67. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00216-008-1970-7.
Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TG, Agnew WF. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng. 1999;7:315–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/86.788468.
Liu J, Fu T-M, Cheng Z, Hong G, Zhou T, Jin L, Duvvuri M, Jiang Z, Kruskal P, Xie C, Suo Z, Fang Y, Lieber CM. Syringe-injectable electronics. Nat Nanotechnol. 2015;10:629–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nnano.2015.115.
LivaNova, Vagus Nerve Stimulation (VNS) therapy for epilepsy | VNS Therapy [WWW Document]. 2023. URL https://www.livanova.com/epilepsy-vnstherapy/en-us. Accessed 10.31.23.
Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng. 2006;3:59–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/3/1/007.
Ludwig KA, Langhals NB, Joseph MD, Richardson-Burns SM, Hendricks JL, Kipke DR. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J Neural Eng. 2011;8:014001. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/8/1/014001.
Luo S, Rabbani Q, Crone NE. Brain-computer interface: applications to speech decoding and synthesis to augment communication. Neurotherapeutics. 2022;19:263–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s13311-022-01190-2.
Lyons KE, Wilkinson SB, Overman J, Pahwa R. Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures. Neurology. 2004;63:612–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1212/01.wnl.0000134650.91974.1a.
Mahajan S, Hermann JK, Bedell HW, Sharkins JA, Chen L, Chen K, Meade SM, Smith CS, Rayyan J, Feng H, Kim Y, Schiefer MA, Taylor DM, Capadona JR, Ereifej ES. Toward standardization of electrophysiology and computational tissue strain in rodent intracortical microelectrode models. Front Bioeng Biotechnol. 2020;8. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fbioe.2020.00416.
Maiseli B, Abdalla AT, Massawe LV, Mbise M, Mkocha K, Nassor NA, Ismail M, Michael J, Kimambo S. Brain–computer interface: trend, challenges, and threats. Brain Inform. 2023;10:20. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40708-023-00199-3.
Makowski NS, Campean A, Lambrecht JM, Buckett JR, Coburn JD, Hart RL, Miller ME, Montague FW, Crish T, Fu MJ, Kilgore KL, Peckham PH, Smith B. Design and testing of stimulation and myoelectric recording modules in an implanted distributed neuroprosthetic system. IEEE Trans Biomed Circuits Syst. 2021;15:281–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBCAS.2021.3066838.
Malagodi MS, Horch KW, Schoenberg AA. An intrafascicular electrode for recording of action potentials in peripheral nerves. Ann Biomed Eng. 1989;17:397–410. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/BF02368058.
Markland C, Merrill D, Chou S, Bradley W. Sacral nerve root stimulation: a clinical test of detrusor innervation. J Urol. 1972;107:772–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0022-5347(17)61137-6.
Marsolais EB, Kobetic R. Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities. J Rehabil Res Dev. 1986;23:1–8.
Massia SP, Holecko MM, Ehteshami GR. In vitro assessment of bioactive coatings for neural implant applications. J Biomed Mater Res A. 2004;68:177–86. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbm.a.20009.
McCarthy PT, Otto KJ, Rao MP. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomed Microdevices. 2011;13:503–15. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10544-011-9519-5.
McCarthy RC, Sosa JC, Gardeck AM, Baez AS, Lee C-H, Wessling-Resnick M. Inflammation-induced iron transport and metabolism by brain microglia. J Biol Chem. 2018;293:7853–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.RA118.001949.
McConnell GC, Rees HD, Levey AI, Gutekunst C-A, Gross RE, Bellamkonda RV. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J Neural Eng. 2009;6:056003. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/6/5/056003.
McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990;37:996–1001. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/10.102812.
McCreery D, Pikov V, Lossinsky A, Bullara L, Agnew W. Arrays for chronic functional microstimulation of the lumbosacral spinal cord. IEEE Trans Neural Syst Rehabil Eng. 2004;12:195–207. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TNSRE.2004.827223.
McCreery D, Pikov V, Troyk PR. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng. 2010;7:036005. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/7/3/036005.
McCreery D, Han M, Pikov V, Miller C. Configuring intracortical microelectrode arrays and stimulus parameters to minimize neuron loss during prolonged intracortical electrical stimulation. Brain Stimul. 2021;14:1553–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.brs.2021.10.385.
Medtronic. Spinal cord stimulation systems. 2017.
Mehta V, Kramer D, Russin J, Liu C, Amar A. Chapter 82 - vagal nerve simulation, in: Krames, E.S., Peckham, P.H., Rezai, A.R. (Eds.), Neuromodulation (Second Edition). Academic Press. 2018:999–1009. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/B978-0-12-805353-9.00082-6.
Meng Y, Voisin MR, Suppiah S, Merali Z, Moghaddamjou A, Alotaibi NM, Manicat-Emo A, Weiss S, Go C, McCoy B, Donner EJ, Rutka JT. Risk factors for surgical site infection after intracranial electroencephalography monitoring for epilepsy in the pediatric population. J Neurosurg Pediatr. 2018;22:31–6. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/2018.1.PEDS17476.
Merrill DR. The electrochemistry of charge injection at the electrode/tissue interface, in: Zhou, D., Greenbaum, E. (Eds.), Implantable neural prostheses 2: techniques and engineering approaches, biological and medical physics, biomedical engineering. Springer, New York, NY. 2010:85–138. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/978-0-387-98120-8_4.
Merrill DR. Materials considerations of implantable neuroengineering devices for clinical use. Curr Opin Solid State Mater Sci, Neuroeng Mat. 2014;18:329–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cossms.2014.07.002.
Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneumeth.2004.10.020.
Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres RF, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Vörös J, Micera S, Suo Z, Courtine G, Lacour SP. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015;347:159–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.1260318.
Mirkiani S, O’Sullivan CL, Roszko DA, Faridi P, Hu DS, Everaert DG, Toossi A, Kang R, Fang T, Tyreman N, Dalrymple AN, Robinson K, Uwiera RRE, Shah H, Fox R, Konrad PE, Mushahwar VK. Safety of mapping the motor networks in the spinal cord using penetrating microelectrodes in Yucatan minipigs. J Neurosurg Spine. 2024;41:1–13. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/2024.2.SPINE23757.
Mishra LN, Kulkarni G, Gadgil M. A novel current steering method for targeted spinal cord stimulation. Front Pain Res. 2020;4. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fpain.2023.1028368.
Mitchell P, Lee SCM, Yoo PE, Morokoff A, Sharma RP, Williams DL, MacIsaac C, Howard ME, Irving L, Vrljic I, Williams C, Bush S, Balabanski AH, Drummond KJ, Desmond P, Weber D, Denison T, Mathers S, O’Brien TJ, Mocco J, Grayden DB, Liebeskind DS, Opie NL, Oxley TJ, Campbell BCV. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the Stentrode With Thought-Controlled Digital Switch (SWITCH) Study. JAMA Neurol. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jamaneurol.2022.4847.
Mohit AA, Samii A, Slimp JC, Grady MS, Goodkin R. Mechanical failure of the electrode wire in deep brain stimulation. Parkinsonism Relat Disord. 2004;10:153–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.parkreldis.2003.11.001.
Moman RN, Peterson AA, Maher DP, Eli I, Hagedorn JM, Bendel MA, Gerberi D, Murad MH, Hooten WM. Infectious complications of dorsal root ganglion stimulation: a systematic review and pooled analysis of incidence. Neuromodulation. 2021. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ner.13473.
Morgalla MH, Fortunato M, Lepski G, Chander BS. Dorsal Root Ganglion Stimulation (DRGS) for the treatment of chronic neuropathic pain: a single-center study with long-term prospective results in 62 cases. Pain Physician. 2018;21:E377–87.
Morishita T, Hilliard JD, Okun MS, Neal D, Nestor KA, Peace D, Hozouri AA, Davidson MR, Bova FJ, Sporrer JM, Oyama G, Foote KD. Postoperative lead migration in deep brain stimulation surgery: incidence, risk factors, and clinical impact. PLoS ONE. 2017;12:e0183711. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0183711.
Moss J, Ryder T, Aziz TZ, Graeber MB, Bain PG. Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson’s disease. Brain. 2004;127:2755–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/brain/awh292.
Mostafa BE, El Fiky L. Complications of cochlear implantation: a decade’s experience. Eur Arch Otorhinolaryngol. 2024;281:6325–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00405-024-08855-y.
Moxon KA, Hallman S, Sundarakrishnan A, Wheatley M, Nissanov J, Barbee KA. Long-term recordings of multiple, single-neurons for clinical applications: the emerging role of the bioactive microelectrode. Materials (Basel). 2009;2:1762–94. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ma2041762.
Muqit MMK, Velikay-Parel M, Weber M, Dupeyron G, Audemard D, Corcostegui B, Sahel J, Le Mer Y. Six-month safety and efficacy of the intelligent retinal implant system II device in retinitis pigmentosa. Ophthalmology. 2019;126:637–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ophtha.2018.11.010.
Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels. J Med Internet Res. 2019;21:e16194. https://doiorg.publicaciones.saludcastillayleon.es/10.2196/16194.
Nadol JB, Shiao JY, Burgess BJ, Ketten DR, Eddington DK, Gantz BJ, Kos I, Montandon P, Coker NJ, Roland JT, Shallop JK. Histopathology of cochlear implants in humans. Ann Otol Rhinol Laryngol. 2001;110:883–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/000348940111000914.
Nadol JB, O’Malley JT, Burgess BJ, Galler D. Cellular immunologic responses to cochlear implantation in the human. Hear Res. 2014;318:11–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.heares.2014.09.007.
Nagarkar K, Hou X, Stoffel N, Davis E, Ashe J, Borton D. Micro-hermetic packaging technology for active implantable neural interfaces, in: 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). Presented at the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). 2017:218–223. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/ECTC.2017.340.
Nair V, Dalrymple AN, Yu Z, Balakrishnan G, Bettinger CJ, Weber DJ, Yang K, Robinson JT. Miniature battery-free bioelectronics. Science. 2023;382:eabn4732. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.abn4732.
Nanivadekar AC, Bose R, Petersen BA, Okorokova EV, Sarma D, Madonna TJ, Barra B, Farooqui J, Dalrymple AN, Levy I, Helm ER, Miele VJ, Boninger ML, Capogrosso M, Bensmaia SJ, Weber DJ, Fisher LE. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation. Nat Biomed Eng. 2023;8:992–1003. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41551-023-01153-8.
Naples GG, Mortimer JT, Scheiner A, Sweeney JD. A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng. 1988;35:905–16. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/10.8670.
Nashold BS, Friedman H, Glenn JF, Grimes JH, Barry WF, Avery R. Electromicturition in paraplegia. Implantation of a spinal neuroprosthesis. Arch Surg. 1972;104:195–202. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/archsurg.1972.04180020075015.
Nashold BS, Friedman H, Grimes J. Electrical stimulation of the conus medullaris to control the bladder in the paraplegic patient. A 10-year review. Appl Neurophysiol. 1981;44:225–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000102205.
Nayagam DAX, Williams RA, Allen PJ, Shivdasani MN, Luu CD, Salinas-LaRosa CM, Finch S, Ayton LN, Saunders AL, McPhedran M, McGowan C, Villalobos J, Fallon JB, Wise AK, Yeoh J, Xu J, Feng H, Millard R, McWade M, Thien PC, Williams CE, Shepherd RK. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study. PLoS ONE. 2014;9:e97182. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0097182.
Nelson MJ, Valtcheva S, Venance L. Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments. J Neurophysiol. 2017;118:574–94. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/jn.00877.2016.
Nguyen Y, Mosnier I, Borel S, Ambert-Dahan E, Bouccara D, Bozorg-Grayeli A, Ferrary E, Sterkers O. Evolution of electrode array diameter for hearing preservation in cochlear implantation. Acta Otolaryngol. 2013;133:116–22. https://doiorg.publicaciones.saludcastillayleon.es/10.3109/00016489.2012.723824.
Noller CM, Levine YA, Urakov TM, Aronson JP, Nash MS. Vagus nerve stimulation in rodent models: an overview of technical considerations. Front Neurosci. 2019;13:911. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2019.00911.
Nunamaker EA, Kipke DR. An alginate hydrogel dura mater replacement for use with intracortical electrodes. J Biomed Mater Res B Appl Biomater. 2010;95:421–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbm.b.31733.
Nurse ES, John SE, Freestone DR, Oxley TJ, Ung H, Berkovic SF, O’Brien TJ, Cook MJ, Grayden DB. Consistency of long-term subdural electrocorticography in humans. IEEE Trans Biomed Eng. 2018;65:344–52. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2017.2768442.
O’Malley JT, Burgess BJ, Galler D, Nadol JB. Foreign body response to silicone in cochlear implant electrodes in the human. Otol Neurotol. 2017;38:970–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/MAO.0000000000001454.
Okorokova EV, He Q, Bensmaia SJ. Biomimetic encoding model for restoring touch in bionic hands through a nerve interface. J Neural Eng. 2018;15:066033. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aae398.
Olson MC, Shill H, Ponce F, Aslam S. Deep brain stimulation in PD: risk of complications, morbidity, and hospitalizations: a systematic review. Front Aging Neurosci. 2023;15:1258190. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnagi.2023.1258190.
Opie NL, Greferath U, Vessey KA, Burkitt AN, Meffin H, Grayden DB, Fletcher EL. Retinal prosthesis safety: alterations in microglia morphology due to thermal damage and retinal implant contact. Invest Ophthalmol vis Sci. 2012;53:7802–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1167/iovs.12-10600.
Opie NL, John SE, Rind GS, Ronayne SM, Grayden DB, Burkitt AN, May CN, O’Brien TJ, Oxley TJ. Chronic impedance spectroscopy of an endovascular stent-electrode array. J Neural Eng. 2016;13:046020. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/13/4/046020.
Opie NL, van der Nagel NR, John SE, Vessey K, Rind GS, Ronayne SM, Fletcher EL, May CN, O’Brien TJ, Oxley TJ. Micro-CT and Histological Evaluation of an Neural Interface Implanted Within a Blood Vessel. IEEE Trans Biomed Eng. 2017;64:928–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2016.2552226.
Opie NL, John SE, Rind GS, Ronayne SM, May CN, Grayden DB, Oxley TJ. Effect of implant duration, anatomical location and electrode orientation on bandwidth recorded with a chronically implanted endovascular stent-electrode array, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018:1074–1077. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/EMBC.2018.8512385.
Orlando VR, Cruz OLM. Postoperative complications in cochlear implant surgery and their possible risk factors. Braz J Otorhinolaryngol. 2024;90:101428. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bjorl.2024.101428.
Oxley TJ, Opie NL, John SE, Rind GS, Ronayne SM, Wheeler TL, Judy JW, McDonald AJ, Dornom A, Lovell TJH, Steward C, Garrett DJ, Moffat BA, Lui EH, Yassi N, Campbell BCV, Wong YT, Fox KE, Nurse ES, Bennett IE, Bauquier SH, Liyanage KA, van der Nagel NR, Perucca P, Ahnood A, Gill KP, Yan B, Churilov L, French CR, Desmond PM, Horne MK, Kiers L, Prawer S, Davis SM, Burkitt AN, Mitchell PJ, Grayden DB, May CN, O’Brien TJ. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol. 2016;34:320–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nbt.3428.
Oxley TJ, Yoo PE, Rind GS, Ronayne SM, Lee CMS, Bird C, Hampshire V, Sharma RP, Morokoff A, Williams DL, MacIsaac C, Howard ME, Irving L, Vrljic I, Williams C, John SE, Weissenborn F, Dazenko M, Balabanski AH, Friedenberg D, Burkitt AN, Wong YT, Drummond KJ, Desmond P, Weber D, Denison T, Hochberg LR, Mathers S, O’Brien TJ, May CN, Mocco J, Grayden DB, Campbell BCV, Mitchell P, Opie NL. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J NeuroInterv Surg. 2020. https://doiorg.publicaciones.saludcastillayleon.es/10.1136/neurintsurg-2020-016862.
Page DM, George JA, Kluger DT, Duncan C, Wendelken S, Davis T, Hutchinson DT, Clark GA. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Fron Hum Neurosci. 2018;12:352. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnhum.2018.00352.
Park S, Guo Y, Jia X, Choe HK, Grena B, Kang J, Park J, Lu C, Canales A, Chen R, Yim YS, Choi GB, Fink Y, Anikeeva P. One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci. 2017;20:612–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nn.4510.
Pashaie R, Anikeeva P, Lee JH, Prakash R, Yizhar O, Prigge M, Chander D, Richner TJ, Williams J. Optogenetic brain interfaces. IEEE Rev Biomed Eng. 2014;7:3–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/RBME.2013.2294796.
Patel SR, Lieber CM. Precision electronic medicine in the brain. Nat Biotechnol. 2019;37:1007–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41587-019-0234-8.
Patrick E, Orazem ME, Sanchez JC, Nishida T. Corrosion of tungsten microelectrodes used in neural recording applications. J Neurosci Methods. 2011;198:158–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneumeth.2011.03.012.
Payne SC, Burns O, Stebbing M, Thomas R, de Silva A, Sedo A, Weissenborn F, Hyakumura T, Huynh M, May CN, Williams RA, Furness JB, Fallon JB, Shepherd RK. Vagus nerve stimulation to treat inflammatory bowel disease: a chronic, preclinical safety study in sheep. Bioelectron Med. 2018;1:235–50. https://doiorg.publicaciones.saludcastillayleon.es/10.2217/bem-2018-0011.
Payne SC, Furness JB, Burns O, Sedo A, Hyakumura T, Shepherd RK, Fallon JB. Anti-inflammatory effects of abdominal vagus nerve stimulation on experimental intestinal inflammation. Front Neurosci. 2019;13:418. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2019.00418.
Payne SC, Wiedmann NM, Eiber CD, Wong AW, Senn P, Osborne PB, Keast JR, Fallon JB. Recording of electrically evoked neural activity and bladder pressure responses in awake rats chronically implanted with a pelvic nerve array. Front Neurosci. 2020;14:619275. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2020.619275.
Peckham PH, Keith MW, Kilgore KL, Grill JH, Wuolle KS, Thrope GB, Gorman P, Hobby J, Mulcahey MJ, Carroll S, Hentz VR, Wiegner A. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil. 2001;82:1380–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1053/apmr.2001.25910.
Pena AE, Kuntaegowdanahalli SS, Abbas JJ, Patrick J, Horch KW, Jung R. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes. J Neural Eng. 2017;14:066014. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aa814d.
Pepper J, Zrinzo L, Mirza B, Foltynie T, Limousin P, Hariz M. The risk of hardware infection in deep brain stimulation surgery is greater at impulse generator replacement than at the primary procedure. Stereotact Funct Neurosurg. 2013;91:56–65. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000343202.
Phillips J, Smit X, De Zoysa N, Afoke A, Brown R. Peripheral nerves in the rat exhibit localized heterogeneity of tensile properties during limb movement. J Physiol. 2004;557:879–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1113/jphysiol.2004.061804.
Pinter MM, Gerstenbrand F, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of Spasticity. Spinal Cord. 2000;38:524–31.
Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005;148:1–18. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneumeth.2005.08.015.
Potter-Baker KA, Nguyen JK, Kovach KM, Gitomer MM, Srail TW, Stewart WG, Skousen JL, Capadona JR. Development of superoxide dismutase mimetic surfaces to reduce accumulation of reactive oxygen species for neural interfacing applications. J Mater Chem B. 2014;2:2248–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1039/C4TB00125G.
Powell MP, Hou X, Galligan C, Ashe J, Borton DA. Toward multi-area distributed network of implanted neural interrogators, in: Biosensing and Nanomedicine X. Presented at the Biosensing and Nanomedicine X, International Society for Optics and Photonics, 2017:103520H. https://doiorg.publicaciones.saludcastillayleon.es/10.1117/12.2276046.
Powell MP, Verma N, Sorensen E, Carranza E, Boos A, Fields D, Roy S, Ensel S, Barra B, Balzer J, Goldsmith J, Friedlander RM, Wittenberg G, Fisher LE, Krakauer JW, Gerszten PC, Pirondini E, Weber DJ, Capogrosso M. Epidural stimulation of the cervical spinal cord improves voluntary motor control in post-stroke upper limb paresis. 2022. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/2022.04.11.22273635.
Prabhala T, Figueroa F, Harland T, Nabage MN, Pilitsis JG. The use of salvage procedures for wound complications in neuromodulation. World Neurosurgery. 2023;171:e596–604. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.wneu.2022.12.071.
Prasad A, Xue Q-S, Sankar V, Nishida T, Shaw G, Streit WJ, Sanchez JC. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng. 2012;9:056015. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/9/5/056015.
Prasad A, Xue Q-S, Dieme R, Sankar V, Mayrand RC, Nishida T, Streit WJ, Sanchez JC. Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants. Front Neuroeng. 2014;7:2. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fneng.2014.00002.
Rao L, Zhou H, Li T, Li C, Duan YY. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Acta Biomater. 2012;8:2233–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2012.03.001.
Rapinesi C, Kotzalidis GD, Ferracuti S, Sani G, Girardi P, Del Casale A. Brain stimulation in Obsessive-Compulsive Disorder (OCD): a systematic review. Curr Neuropharmacol. 2019;17:787–807. https://doiorg.publicaciones.saludcastillayleon.es/10.2174/1570159X17666190409142555.
Raslan AM, McCartney S, Burchiel KJ. Management of chronic severe pain: spinal neuromodulatory and neuroablative approaches. Acta Neurochir Suppl. 2007;97:33–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/978-3-211-33079-1_4.
Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, Granata G, Oddo CM, Citi L, Ciancio AL, Cipriani C, Carrozza MC, Jensen W, Guglielmelli E, Stieglitz T, Rossini PM, Micera S. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6:222ra19-222ra19. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scitranslmed.3006820.
Rastogi A, Willett FR, Abreu J, Crowder DC, Murphy BA, Memberg WD, Vargas-Irwin CE, Miller JP, Sweet J, Walter BL, Rezaii PG, Stavisky SD, Hochberg LR, Shenoy KV, Henderson JM, Kirsch RF, Ajiboye AB. The neural representation of force across grasp types in motor cortex of humans with Tetraplegia. eNeuro. 2021;8:ENEURO.0231–20.2020. https://doiorg.publicaciones.saludcastillayleon.es/10.1523/ENEURO.0231-20.2020.
Ravikumar M, Sunil S, Black J, Barkauskas DS, Haung AY, Miller RH, Selkirk SM, Capadona JR. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes. Biomaterials. 2014;35:8049–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2014.05.084.
Regan RF, Panter SS. Hemoglobin potentiates excitotoxic injury in cortical cell culture. J Neurotrauma. 1996;13:223–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/neu.1996.13.223.
Richardson RR, McLone DG. Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol. 1978;9:153–5.
Rijkhoff NJM, Koldewijn EL, van Kerrebroeck PEV, Debruyne FMJ, Wijkstra H. Acute animal studies on the use of an anodal block to reduce urethral resistance in sacral root stimulation. IEEE Trans Rehabil Eng. 1994;2:92–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/86.313150.
Rijkhoff NJ, Wijkstra H, van Kerrebroeck PE, Debruyne FM. Selective detrusor activation by electrical sacral nerve root stimulation in spinal cord injury. J Urol. 1997;157:1504–8.
Rijnbeek EH, Eleveld N, Olthuis W. Update on peripheral nerve electrodes for closed-loop neuroprosthetics. Front Neurosci. 2018;12. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2018.00350.
Rizzo S, Barale P-O, Ayello-Scheer S, Devenyi RG, Delyfer M-N, Korobelnik J-F, Rachitskaya A, Yuan A, Jayasundera KT, Zacks DN, Handa JT, Montezuma SR, Koozekanani D, Stanga PE, da Cruz L, Walter P, Augustin AJ, Chizzolini M, Olmos de Koo LC, Ho AC, Kirchhof B, Hahn P, Vajzovic L, Iezzi R, Gaucher D, Arevalo JF, Gregori NZ, Grisanti S, Özmert E, Yoon YH, Kokame GT, Lim JI, Szurman P, de Juan E, Rezende FA, Salzmann J, Richard G, Huang SS, Merlini F, Patel U, Cruz C, Greenberg RJ, Justus S, Cinelli L, Humayun MS. ADVERSE EVENTS OF THE ARGUS II RETINAL PROSTHESIS: incidence, causes, and best practices for managing and preventing conjunctival erosion. Retina. 2020;40:303–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/IAE.0000000000002394.
Robinson JT, Jorgolli M, Shalek AK, Yoon M-H, Gertner RS, Park H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotech. 2012;7:180–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nnano.2011.249.
Robinson J, Woods J, Alrashdan F, Chen E, Tan W, John M, Jaworski L, Beranrd D, Post A, Moctezuma-Ramirez A, Elgalad A, Steele A, Barber S, Horner P, Faraji A, Sayenko D, Razavi M. Scalable networks of wireless bioelectronics using magnetoelectrics. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.21203/rs.3.rs-5005441/v1.
Rodríguez FJ, Ceballos D, Schüttler M, Valero A, Valderrama E, Stieglitz T, Navarro X. Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods. 2000;98:105–18. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0165-0270(00)00192-8.
Rolston JD, Englot DJ, Cornes S, Chang EF. Major and minor complications in extraoperative electrocorticography: A review of a national database. Epilepsy Res. 2016;122:26–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.eplepsyres.2016.02.004.
Rousche PJ, Normann RA. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods. 1998;82:1–15. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0165-0270(98)00031-4.
Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001;48:361–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/10.914800.
Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009;6:036003. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/6/3/036003.
Rueb JJ, Pizarro-Berdichevsky J, Goldman HB. 17-year single center retrospective review of rate, risk factors, and outcomes of lead breakage during sacral neuromodulation lead removal. J Urol. 2020: 101097JU0000000000000740. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/JU.0000000000000740.
Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, Howland R, Kling MA, Rittberg BR, Burke WJ, Rapaport MH, Zajecka J, Nierenberg AA, Husain MM, Ginsberg D, Cooke RG. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry. 2005;58:347–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopsych.2005.05.025.
Sahasrabuddhe K, Khan AA, Singh AP, Stern TM, Ng Y, Tadić A, Orel P, LaReau C, Pouzzner D, Nishimura K, Boergens KM, Shivakumar S, Hopper MS, Kerr B, Hanna M-ES, Edgington RJ, McNamara I, Fell D, Gao P, Babaie-Fishani A, Veijalainen S, Klekachev AV, Stuckey AM, Luyssaert B, Kozai TDY, Xie C, Gilja V, Dierickx B, Kong Y, Straka M, Sohal HS, Angle MR. The Argo: a high channel count recording system for neural recording in vivo. J Neural Eng. 2021;18:015002. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/abd0ce.
Schendel AA, Nonte MW, Vokoun C, Richner TJ, Brodnick SK, Atry F, Frye S, Bostrom P, Pashaie R, Thongpang S, Eliceiri KW, Williams JC. The effect of micro-ECoG substrate footprint on the meningeal tissue response. J Neural Eng. 2014;11:046011. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/11/4/046011.
Schultz RL, Willey TJ. The ultrastructure of the sheath around chronically implanted electrodes in brain. J Neurocytol. 1976;5:621–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/BF01181577.
Seese TM, Harasaki H, Saidel GM, Davies CR. Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. Lab Invest. 1998;78:1553–62.
Medtronic. SenSight - DBS Directional Lead [WWW Document]. 2022. URL https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/deep-brain-stimulation-systems/sensight-lead.html. Accessed 10.30.23.
Seo D, Neely RM, Shen K, Singhal U, Alon E, Rabaey JM, Carmena JM, Maharbiz MM. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron. 2016;91:529–39. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neuron.2016.06.034.
Seymour JP, Kipke DR. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4606–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/IEMBS.2006.260528.
Seymour JP, Kipke DR. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials. 2007;28:3594–607. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2007.03.024.
Seymour JP, Langhals NB, Anderson DJ, Kipke DR. Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed Microdevices. 2011;13:441–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10544-011-9512-z.
Sharp AA, Panchawagh HV, Ortega A, Artale R, Richardson-Burns S, Finch DS, Gall K, Mahajan RL, Restrepo D. Toward a self-deploying shape memory polymer neuronal electrode. J Neural Eng. 2006;3:L23-30. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/3/4/L02.
Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK, Howland DR. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun. 2005;336:1268–77. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2005.08.252.
Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489–91.
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8:5671–701. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ma8095269.
Shepherd R, Wise A, Fallon J. Chapter 16 - Cochlear implants, in: Celesia, G.G. (Ed.), Handbook of clinical neurophysiology, disorders of peripheral and central auditory processing. Elsevier, 2013:315–331. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/B978-0-7020-5310-8.00016-8.
Shepherd RK, Villalobos J, Burns O, Nayagam DAX. The development of neural stimulators: a review of preclinical safety and efficacy studies. J Neural Eng. 2018;15:041004. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aac43c.
Shepherd RK, Carter PM, Enke YL, Wise AK, Fallon JB. Chronic intracochlear electrical stimulation at high charge densities results in platinum dissolution but not neural loss or functional changes in vivo. J Neural Eng. 2019;16:026009. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aaf66b.
Shepherd RK, Carter P, Enke YL, Thompson A, Flynn B, Trang E, Dalrymple A, Fallon JB. Chronic intracochlear electrical stimulation at high charge densities: reducing platinum dissolution. J Neural Eng. 2020. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/abb7a6.
Shepherd RK, Carter PM, Dalrymple AN, Enke YL, Wise AK, Nguyen T, Firth J, Thompson A, Fallon JB. Platinum dissolution and tissue response following long-term electrical stimulation at high charge densities. J Neural Eng. 2021;18:036021. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/abe5ba.
Shibata S, Kunieda T, Inano R, Sawada M, Yamao Y, Kikuchi T, Matsumoto R, Ikeda A, Takahashi R, Mikuni N, Takahashi J, Miyamoto S. Risk factors for infective complications with long-term subdural electrode implantation in patients with medically intractable partial epilepsy. World Neurosurgery. 2015;84:320–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.wneu.2015.03.048.
Shulgach JA, Beam DW, Nanivadekar AC, Miller DM, Fulton S, Sciullo M, Ogren J, Wong L, McLaughlin BL, Yates BJ, Horn CC, Fisher LE. Selective stimulation of the ferret abdominal vagus nerve with multi-contact nerve cuff electrodes. Sci Rep. 2021;11:12925. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-021-91900-1.
Sidambe AT. Biocompatibility of advanced manufactured titanium implants-a review. Materials (Basel). 2014;7:8168–88. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ma7128168.
Siddiqui F, Herial NA, Ali II. Cumulative effect of vagus nerve stimulators on intractable seizures observed over a period of 3years. Epilepsy Behav. 2010;18:299–302. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.yebeh.2010.04.008.
Siegel S, Noblett K, Mangel J, Bennett J, Griebling TL, Sutherland SE, Bird ET, Comiter C, Culkin D, Zylstra S, Kan F, Berg KC. Five-year followup results of a prospective, multicenter study of patients with overactive bladder treated with sacral neuromodulation. J Urol. 2018;199:229–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.juro.2017.07.010.
Singh O, Carvalho DZ, Espay AJ, Benarroch EE, Grewal SS, Pagani-Estévez GL. Spinal cord stimulation for gait impairment in Parkinson Disease: scoping review and mechanistic considerations. Pain Med. 2023;24:S11–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/pm/pnad092.
Sinniger V, Pellissier S, Fauvelle F, Trocmé C, Hoffmann D, Vercueil L, Cracowski J-L, David O, Bonaz B. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterol Motil. 2020;32:e13911. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/nmo.13911.
Sivanesan E, Bicket MC, Cohen SP. Retrospective analysis of complications associated with dorsal root ganglion stimulation for pain relief in the FDA MAUDE database. Reg Anesth Pain Med. 2019;44:100–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1136/rapm-2018-000007.
Smith B, Peckham PH, Keith MW, Roscoe DD. An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans Biomed Eng. 1987;34:499–508. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/tbme.1987.325979.
Sohal HS, Clowry GJ, Jackson A, O’Neill A, Baker SN. Mechanical flexibility reduces the foreign body response to long-term implanted microelectrodes in rabbit cortex. PLoS ONE. 2016;11:e0165606. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0165606.
Sperry ZJ, Na K, Parizi SS, Chiel HJ, Seymour J, Yoon E, Bruns TM. Flexible microelectrode array for interfacing with the surface of neural ganglia. J Neural Eng. 2018;15:036027. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/aab55f.
Spindler P, Braun F, Truckenmüller P, Wasilewski D, Faust K, Schneider G-H, Trampuz A, Conen A, Kühn AA, Vajkoczy P, Prinz V. Surgical site infections associated with implanted pulse generators for deep brain stimulation: meta-analysis and systematic review. Neuromodulation. 2023;26:280–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neurom.2022.03.014.
Sponheim C, Papadourakis V, Collinger JL, Downey J, Weiss J, Pentousi L, Elliott K, Hatsopoulos N. Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode Arrays. J Neural Eng. 2021;18. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ac3eaf.
Squair JW, Gautier M, Mahe L, Soriano JE, Rowald A, Bichat A, Cho N, Anderson MA, James ND, Gandar J, Incognito AV, Schiavone G, Sarafis ZK, Laskaratos A, Bartholdi K, Demesmaeker R, Komi S, Moerman C, Vaseghi B, Scott B, Rosentreter R, Kathe C, Ravier J, McCracken L, Kang X, Vachicouras N, Fallegger F, Jelescu I, Cheng Y, Li Q, Buschman R, Buse N, Denison T, Dukelow S, Charbonneau R, Rigby I, Boyd SK, Millar PJ, Moraud EM, Capogrosso M, Wagner FB, Barraud Q, Bezard E, Lacour SP, Bloch J, Courtine G, Phillips AA. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature. 2021;590:308–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-020-03180-w.
Sridar S, Churchward MA, Mushahwar VK, Todd KG, Elias AL. Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring. Acta Biomater. 2017;60:154–66. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2017.07.026.
Stiller AM, González-González MA, Boothby JM, Sherman SE, Benavides J, Romero-Ortega M, Pancrazio JJ, Black BJ. Mechanical considerations for design and implementation of peripheral intraneural devices. J Neural Eng. 2019;16:064001. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab4114.
Stock G, Sturm V, Schmitt HP, Schlör KH. The influence of chronic deep brain stimulation on excitability and morphology of the stimulated tissue. Acta Neurochir. 1979;47:123–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/BF01404668.
Stöver T, Lenarz T. Biomaterials in cochlear implants. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2011;8:Doc10. https://doiorg.publicaciones.saludcastillayleon.es/10.3205/cto000062.
Street MG, Welle CG, Takmakov PA. Automated reactive accelerated aging for rapid in vitro evaluation of neural implant performance. Rev Sci Instrum. 2018;89:094301. https://doiorg.publicaciones.saludcastillayleon.es/10.1063/1.5024686.
Subbaroyan J, Martin DC, Kipke DR. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J Neural Eng. 2005;2:103–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/2/4/006.
Sukhu T, Kennelly MJ, Kurpad R. Sacral neuromodulation in overactive bladder: a review and current perspectives. Res Rep Urol. 2016;8:193–9. https://doiorg.publicaciones.saludcastillayleon.es/10.2147/RRU.S89544.
Suminski AJ, Rajala AZ, Birn RM, Mueller EM, Malone ME, Ness JP, Filla C, Brunner K, McMillan AB, Poore SO, Williams JC, Murali D, Brzeczkowski A, Hurley SA, Dingle AM, Zeng W, Lake WB, Ludwig KA, Populin LC. Vagus nerve stimulation in the non-human primate: implantation methodology, characterization of nerve anatomy, target engagement and experimental applications. Bioelectron Med. 2023;9:9. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s42234-023-00111-8.
Sverrisdottir YB, Martin SC, Hadjipavlou G, Kent AR, Paterson DJ, FitzGerald JJ, Green AL. Human dorsal root ganglion stimulation reduces sympathetic outflow and long-term blood pressure. JACC Basic Transl Sci. 2020;5:973–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jacbts.2020.07.010.
Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W. Brain responses to micro-machined silicon devices. Brain Res. 2003;983:23–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0006-8993(03)03023-3.
Szymanski LJ, Kellis S, Liu CY, Jones KT, Andersen RA, Commins D, Lee B, McCreery DB, Miller CA. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J Neural Eng. 2021;18. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ac127e.
Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip. 2005;5:519–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1039/b417497f.
Takmakov P, Ruda K, Scott Phillips K, Isayeva IS, Krauthamer V, Welle CG. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J Neural Eng. 2015;12:026003. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/12/2/026003.
Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6:257ra138–257ra138. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scitranslmed.3008669.
Tanagho EA, Schmidt RA, Orvis BR. Neural stimulation for control of voiding dysfunction: a preliminary report in 22 patients with serious neuropathic voiding disorders. J Urol. 1989;142:340–5.
Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA. 1998;95:8841–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.95.15.8841.
Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol. 2012;109:283–96. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/B978-0-444-52137-8.00018-8.
Tawakol O, Herman MD, Foxley S, Mushahwar VK, Towle VL, Troyk PR. In-vivo testing of a novel wireless intraspinal microstimulation interface for restoration of motor function following spinal cord injury. Artif Organs. 2024;48:263–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/aor.14562.
Tebcherani TM, Loparo KA, Kaffashi F, Tyler DJ, Graczyk EL. Interleaved multi-contact peripheral nerve stimulation to enhance reproduction of tactile sensation: a computational modeling study. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2024:1–1. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TNSRE.2024.3414939.
Tien LW, Wu F, Tang-Schomer MD, Yoon E, Omenetto FG, Kaplan DL. Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes. Adv Func Mater. 2013;23:3185–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/adfm.201203716.
Tilz RR, Pürerfellner H, Kuck K-H, Merino JL, Schmidt V, Vogler J, Xiang K, Uzunoglu EC, Heeger C-H, Tandri H, Assis F, Steven D, Veltmann C, Catanzaro JN, Popescu SS. Underreporting of complications following AF ablation: comparison of the manufacturer and user facility device experience fda database and a voluntary invitation-based registry: the POTTER-AF 3 study. Heart Rhythm. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.hrthm.2024.09.060.
Ting JE, Hooper CA, Dalrymple AN, Weber DJ. Tonic stimulation of dorsal root ganglion results in progressive decline in recruitment of Aα/β-fibers in rats. Neuromodulation: Technology at the Neural Interface. 2024;27:1347–1359. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neurom.2024.06.498.
Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: a critical review. Seizure. 2020;83:104–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.seizure.2020.09.027.
Toossi A, Everaert DG, Azar A, Dennison CR, Mushahwar VK. Mechanically stable intraspinal microstimulation implants for human translation. Ann Biomed Eng. 2017;45:681–94. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10439-016-1709-0.
Towle VL, Pytel P, Lane F, Plass J, Frim DM, Troyk PR. Postmortem investigation of a human cortical visual prosthesis that was implanted for 36 years. J Neural Eng. 2020;17:045010. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab9d11.
Traeger R. Nonhermeticity of polymeric lid sealants. IEEE Trans Parts Hybrids Packaging. 1977;13:147–52. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TPHP.1977.1135193.
Tresco PA, Winslow BD. The challenge of integrating devices into the central nervous system. Crit Rev Biomed Eng. 2011;39:29–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1615/critrevbiomedeng.v39.i1.30.
Trevathan JK, Baumgart IW, Nicolai EN, Gosink BA, Asp AJ, Settell ML, Polaconda SR, Malerick KD, Brodnick SK, Zeng W, Knudsen BE, McConico AL, Sanger Z, Lee JH, Aho JM, Suminski AJ, Ross EK, Lujan JL, Weber DJ, Williams JC, Franke M, Ludwig KA, Shoffstall AJ. An injectable neural stimulation electrode made from an in-body curing polymer/metal composite. Adv Healthcare Mater. 2019;8:1900892. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/adhm.201900892.
Triolo RJ, Bailey SN, Miller ME, Rohde LM, Anderson JS, Davis JA, Abbas JJ, DiPonio LA, Forrest GP, Gater DR, Yang LJ. Longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. Arch Phys Med Rehabil. 2012;93:896–904. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.apmr.2012.01.001.
Triolo RJ, Bailey SN, Foglyano KM, Kobetic R, Lombardo LM, Miller ME, Pinault G. Long-term performance and user satisfaction with implanted neuroprostheses for upright mobility after Paraplegia: 2- to 14-year follow-up. Arch Phys Med Rehabil. 2018;99:289–98. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.apmr.2017.08.470.
Troyk P, Hu Z. Simplified design equations for Class-E neural prosthesis transmitters. IEEE Trans Biomed Eng. 2013;60:1414–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2012.2237172.
Troyk PR, Rush AD. Inductive link design for miniature implants, in: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Presented at the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009:204–209. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/IEMBS.2009.5333621.
Troyk PR, Bradley D, Bak M, Cogan S, Erickson R, Hu Z, Kufta C, McCreery D, Schmidt E, Sung S, Towle V. Intracortical visual prosthesis research - approach and progress. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:7376–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/IEMBS.2005.1616216.
Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson M, Craighead H. Cerebral astrocyte response to micromachined silicon implants. Exp Neurol. 1999;156:33–49. https://doiorg.publicaciones.saludcastillayleon.es/10.1006/exnr.1998.6983.
Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10:294–303. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TNSRE.2002.806840.
Vanloon M, Van Broeckhoven T, Raymaekers V, De Ridder D, Billet B, Meeuws S, Menovsky T, Plazier M. Noninfectious complications of dorsal root ganglion stimulation: a systematic review and meta-analysis. Neuromodulation: Technology at the Neural Interface 2025;28:234–248. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neurom.2024.10.010.
Vara H, Collazos-Castro JE. Enhanced spinal cord microstimulation using conducting polymer-coated carbon microfibers. Acta Biomater. 2019;90:71–86. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2019.03.037.
Veith A, Li X, Modi H, Abbaspour A, Luan L, Xie C, Baker AB. Optimized design of a hyperflexible sieve electrode to enhance neurovascular regeneration for a peripheral neural interface. Biomaterials. 2021;275:120924. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2021.120924.
Venkatraman S, Hendricks J, King ZA, Sereno AJ, Richardson-Burns S, Martin D, Carmena JM. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans Neural Syst Rehabil Eng. 2011;19:307–16. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TNSRE.2011.2109399.
Volkova K, Lebedev MA, Kaplan A, Ossadtchi A. Decoding movement from electrocorticographic activity: a review. Front Neuroinform. 2019;13:74. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fninf.2019.00074.
Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release. 2006;110:531–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jconrel.2005.10.027.
Wagner FB, Mignardot J-B, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seáñez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-018-0649-2.
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pneurobio.2010.08.001.
Wang TR, Moosa S, Dallapiazza RF, Elias WJ, Lynch WJ. Deep brain stimulation for the treatment of drug addiction. Neurosurg Focus. 2018;45:E11. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/2018.5.FOCUS18163.
Ward MP, Rajdev P, Ellison C, Irazoqui PP. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 2009;1282:183–200. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.brainres.2009.05.052.
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S1474-4422(14)70117-6.
Ware T, Simon D, Liu C, Musa T, Vasudevan S, Sloan A, Keefer EW, Rennaker RL II, Voit W. Thiol-ene/acrylate substrates for softening intracortical electrodes. J Biomed Mater Res B Appl Biomater. 2014;102:1–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbmb.32946.
Weber C. Closed-loop control neural activity technology roadmap white paper v2. 2020. https://brain.ieee.org/publications/research-and-white-papers/future-neural-therapeutics-closed-loop-control-of-neural-activity/.
Wei XF, Grill WM. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. J Neural Eng. 2009;6:046008. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/6/4/046008.
Weir RF, Troyk PR, DeMichele GA, Kerns DA, Schorsch JF, Maas H. Implantable Myoelectric Sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans Biomed Eng. 2009;56:159–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.2008.2005942.
White-Dzuro GA, Lake W, Eli IM, Neimat JS. Novel approach to securing deep brain stimulation leads: technique and analysis of lead migration, breakage, and surgical infection. Stereotact Funct Neurosurg. 2016;94:18–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000442893.
Wiley JD, Webster JG. Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans Biomed Eng. 1982;29:381–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/TBME.1982.324910.
Wilk M, Hessler R, Mugridge K, Jolly C, Fehr M, Lenarz T, Scheper V. Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode. PLoS ONE. 2016;11:e0147552. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0147552.
Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. High-performance brain-to-text communication via handwriting. Nature. 2021;593:249–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-021-03506-2.
Willett FR, Kunz EM, Fan C, Avansino DT, Wilson GH, Choi EY, Kamdar F, Glasser MF, Hochberg LR, Druckmann S, Shenoy KV, Henderson JM. A high-performance speech neuroprosthesis. Nature. 2023;620:1031–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-023-06377-x.
Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng. 2007;4:410–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2560/4/4/007.
Williamson A, Ferro M, Leleux P, Ismailova E, Kaszas A, Doublet T, Quilichini P, Rivnay J, Rózsa B, Katona G, Bernard C, Malliaras GG. Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Adv Mater. 2015;27:4405–10. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/adma.201500218.
Winslow BD, Christensen MB, Yang W-K, Solzbacher F, Tresco PA. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Biomaterials. 2010;31:9163–72. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2010.05.050.
Woeppel K, Hughes C, Herrera AJ, Eles JR, Tyler-Kabara EC, Gaunt RA, Collinger JL, Cui XT. Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front Bioeng Biotechnol. 2021;9:759711. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fbioe.2021.759711.
Xiao Z, Gong L, Chang G, Long X, Pan Z, Guo X, Wang Y, Zhang Y, Ma W, Guo Y. Skin erosion following deep brain stimulator implantation: a case report. Interdiscip Neurosurg. 2024;36:101891. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.inat.2023.101891.
Xie C, Liu J, Fu T-M, Dai X, Zhou W, Lieber CM. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat Mater. 2015;14:1286–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nmat4427.
Xu J, Shepherd RK, Millard RE, Clark GM. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study. Hear Res. 1997;105:1–29. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0378-5955(96)00193-1.
Yamamoto T, Katayama Y, Kano T, Kobayashi K, Oshima H, Fukaya C. Deep brain stimulation for the treatment of parkinsonian, essential, and poststroke tremor: a suitable stimulation method and changes in effective stimulation intensity. J Neurosurg. 2004;101:201–9. https://doiorg.publicaciones.saludcastillayleon.es/10.3171/jns.2004.101.2.0201.
Yan JS, Orecchioni M, Vitale F, Coco JA, Duret G, Antonucci S, Pamulapati SS, Taylor LW, Dewey OS, Di Sante M. Biocompatibility studies of macroscopic fibers made from carbon nanotubes: Implications for carbon nanotube macrostructures in biomedical applications. Carbon. 2021;173:462–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.carbon.2020.10.077.
Yan D, Jiman AA, Bottorff EC, Patel PR, Meli D, Welle EJ, Ratze DC, Havton LA, Chestek CA, Kemp SWP, Bruns TM, Yoon E, Seymour JP. Ultraflexible and stretchable intrafascicular peripheral nerve recording device with axon-dimension. Cuff-Less Microneedle Electrode Array Small. 2022;18:e2200311. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/smll.202200311.
Yianni J, Nandi D, Shad A, Bain P, Gregory R, Aziz T. Increased risk of lead fracture and migration in dystonia compared with other movement disorders following deep brain stimulation. J Clin Neurosci. 2004;11:243–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jocn.2003.10.003.
Yin R, Noble BC, He F, Zolotavin P, Rathore H, Jin Y, Sevilla N, Xie C, Luan L. Chronic co-implantation of ultraflexible neural electrodes and a cranial window. Nph. 2022;9:032204. https://doiorg.publicaciones.saludcastillayleon.es/10.1117/1.NPh.9.3.032204.
Zbar AP. Sacral neuromodulation and peripheral nerve stimulation in patients with anal incontinence: an overview of techniques, complications and troubleshooting. Gastroenterol Rep (Oxf). 2014;2:112–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/gastro/gou015.
Zeng F-G, Rebscher S, Harrison W, Sun X, Feng H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng. 2008;1:115–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1109/RBME.2008.2008250.
Zhao Z, Luan L, Wei X, Zhu H, Li X, Lin S, Siegel JJ, Chitwood RA, Xie C. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 2017;17:4588–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/acs.nanolett.7b00956.
Zhao Z, Li X, He F, Wei X, Lin S, Xie C. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. J Neural Eng. 2019;16:035001. https://doiorg.publicaciones.saludcastillayleon.es/10.1088/1741-2552/ab05b6.
Zhao Z, Zhu H, Li X, Sun L, He F, Chung JE, Liu DF, Frank L, Luan L, Xie C. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat Biomed Eng. 2022. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41551-022-00941-y.
Zhong Y, Bellamkonda RV. Controlled release of anti-inflammatory agent alpha-MSH from neural implants. J Control Release. 2005;106:309–18. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jconrel.2005.05.012.
Zhong Y, Bellamkonda RV. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 2007;1148:15–27. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.brainres.2007.02.024.
Acknowledgements
Dear reader, the authors would like to thank T.S. for inspiring the subsections of The Manuscript. We thank Dr. Kip Ludwig for his assistance in identifying clinical and regulatory safety criteria and device recalls.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
AND and DJW conceived of the manuscript focus, AND wrote the manuscript text with input from JBF, RKS, and DJW. AND and STJ created figures and tables. All authors reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
DJW is a founder and shareholder of Reach Neuro, Inc., consultant and shareholder of Neuronoff, Inc., shareholder and scientific board member for NeuroOne Medical, Inc., and a shareholder of Bionic Power Inc., Iota Biosciences Inc., and Blackfynn Inc. JBF is Chair of the Scientific Board of Hemidemia, but does not have a financial interest. The other authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Dalrymple, A.N., Jones, S.T., Fallon, J.B. et al. Overcoming failure: improving acceptance and success of implanted neural interfaces. Bioelectron Med 11, 6 (2025). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s42234-025-00168-7
Received:
Accepted:
Published:
DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s42234-025-00168-7